

Mesh-Covered Stents for Carotid Intervention: Rationale, Device Designs, Imaging, and Data to Date

Piotr Musialek, MD DPhil

9tct2015

Jagiellonian University Dept. of Cardiac & Vascular Diseases John Paul II Hospital, Krakow, Poland

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria

Company

- ABBOTT
- ABBOTT, Balton, InspireMD, Medtronic

Mesh-Covered Stents for Carotid Intervention

Rationale

CAS (and CEA) are –and will remain– emboli-generating procedures

Figure 1. Microembolic profile during unprotected CAS. The mean MES counts during various phases of the procedure are displayed.

Circulation. 2001;104:1999-2002

Effect of the Distal-Balloon Protection System on Stenting Carotid **Microembolization During**

Nadim Al-Mubarak, MD; Gary S. Roubin, MD, PhD; Jiri J. Vitek, MD, PhD; Sriram S. Iyer, MD; Gishel New, MD; Martin B. Leon, MD

9tct2015

<u>Post-procedural</u> Embolization with conventional carotid stents DW-MRI post CAS

Mean total lesion area

Schofer J et al, JACC Cardiovasc interv 2008

Does Free Cell Area Influence the Outcome in Carotid Artery Stenting?

M. Bosiers,^{1*} G. de Donato,² K. Deloose,¹ J. Verbist,³ P. Peeters,³ F. Castriota,⁴ A. Cremonesi⁴ and C. Setacci⁴

Overview of	of	event	rates	related	to	the	different	stents
-------------	----	-------	-------	---------	----	-----	-----------	--------

	Total population			Symptom	Symptomatic population			Asymptomatic population		
	Patients	All events	Post-proce events	edural Patients	All events	Post-procedural events	Patients	All events	Post-procedural events	
Stent name				`						
X-act		1.9%	1.9%		2.2%	2.2%		1.7%	1.7%	
Nexstent		3.3%	3.3%		0.0%	0.0%		4.2%	4.2%	
Wallstent		2.3%	1.2%	17/2	2.3%	1.2%		2.3%	1.2%	
Precise		4.1%	3.1%		6.3%	4.9%		2.0%	1.3%	
Protégé		3.0%	3.0%		6.7%	6.7%		1.4%	1.4%	
Acculink		4.2%	3.7%	CAS nouro	7.7%	7.1%		1.7%	1.2%	
Exponent		11.8%	5.9%	CAS neuro	9.1%	9.1%		13.0%	4.3%	
Total	3179	2.83%	1.9%	J events	3.6%	2.73%	1862	2.25%	1.3%	
				(stroke, TI	A)					
				are POST-	proced	ural				

Eur J Vasc Endovasc Surg Vol 33, February 2007

FREE CELL AREA drives CAS neurologic adverse events (and majority occur *post-procedure*)

Free cell area	Total p	opulation	Symptomatic population		
	All events	Post- procedural events	All events	Post- procedural events	
<2.5 vs [2.5, 5] <2.5 vs [5, 7.5] <2.5 vs >7.5	1.00 0.054 0.27	1.00 0.072 0.006	1.00 0.048 0.0006	1.00 0.024 $2.8 \ 10^{-6}$	

Eur J Vasc Endovasc Surg Vol 33, February 2007

Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

Conventional Carotid Stent

Image Courtesy Dr Juan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

current best-in-class Hybrid stent

9tct2015

current best-in-class Closed-cell stent

ANY data on incidence of **PLAQUE PROLAPSE** in conventional carotid stents?

Post-procedural PLAQUE PROLAPSE through conventional stent struts

Suzuki M et al. ESC 2014 Presentation www.escardio.org

81 y.o. Female, Symptomatic

1/3 stents = Precise 2/3 stents = Carotid Wallstent

Images: Dr M. Suzuki ESC 2014

www.escardio.org

Eur Heart J. 2014;35(Abstr Suppl):178

Post-procedural PLAQUE PROLAPSE through conventional stent struts

	Closed cell	Open cell	Hybrid cell
	(<i>n</i> = 17)	(<i>n</i> = 13)	(<i>n</i> = 10)
Plaque prolapse ^b	17.6%, (3)	61.5%, (8)	30%, (3)

^b At least 10 appreciable tissue prolapses between the stent struts per patient.

9tct2015

De Donato et al. Eur J Vasc Endovasc Surg 2013;45:579-587.

Conventional Carotid Stent

Image Courtesy Dr Juan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

Conventional Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

9tct2015

			Periprocedural Period	N Engl J Med 2	010;363:11-23.
CRESI	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
➡ Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

The periprocedural period was defined, according to the study protocol, as the 30-day period after the procedure

ODECT			Periprocedural Period	N Engl J Med 2	010;363:11-23.
CRESI	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
➡ Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

The periprocedural period was defined, according to the study protocol, as the 30-day period after the procedure

ODECT			Periprocedural Period	N Engl J Med 2	2010;363:11-23.
CRESI	CAS (N=1262)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (0.7±0.2)	4 (0.3±0.2)	0.4 (-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major stroke	11 (0.9±0.3)	8 (0.6±0.2)	0.2 (-0.5 to 0.9)	1.35 (0.54 to 3.36)	0.52
➡ Minor stroke	41 (3.2±0.5)	21 (1.7±0.4)	1.6 (0.3 to 2.8)	1.95 (1.15 to 3.30)	0.01
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

9tct2015

ODECT			Periprocedural Period	N Engl J Med 2	010;363:11-23
CRESI	CAS (N=12 62)	CEA (N=1240)	Absolute Treatment Effect of CAS vs. CEA (95% CI)	Hazard Ratio for CAS vs. CEA (95% CI)	P Value
	no. of patie	nts (% ±SE)	percentage points		
Death	9 (2003.2)	4.//B±0.	-0.2 to 1.0)	2.25 (0.69 to 7.30)†	0.18†
Stroke					
Any	52 (6)	29	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Major ipsilateral	11 (0.9±0.3)	4 (0.3±0.2)	0.5 (-0.1 to 1.2)	2.67 (0.85 to 8.40)	0.09
Major nonipsilateral‡	0	4 (0.3±0.2)	NA	NA	NA
Minor ipsilateral	37 (2.9±0.5)	17 (1.4±0.3)	1.6 (0.4 to 2.7)	2.16 (1.22 to 3.83)	0.009
Minor nonipsilateral	4 (0.3±0.2)	4 (0.3±0.2)	0.0 (-0.4 to 0.4)	1.02 (0.25 to 4.07)	0.98†
Myocardial infarction	14 (1.1±0.3)	28 (2.3±0.4)	-1.1 (-2.2 to -0.1)	0.50 (0.26 to 0.94)	0.03
Any periprocedural stroke or postprocedural ipsilateral stroke	52 (4.1±0.6)	29 (2.3±0.4)	1.8 (0.4 to 3.2)	1.79 (1.14 to 2.82)	0.01
Majo stuke e ne		o ((o±v?) (1 4)			012
Any periprocedural stroke or death or post- procedural ipsilateral stroke	55 (4.4±0.6)	29 (2.3±0.4)	2.0 (0.6 to 3.4)	1.90 (1.21 to 2.98)	0.005
Primary end point (any periprocedural stroke, myocardial infarction, or death or postprocedural ipsilateral stroke)	66 (5.2±0.6)	56 (4.5±0.6)	0.7 (-1.0 to 2.4)	1.18 (0.82 to 1.68)	0.38

9tct2015

Place protrusion may lead to early and ate distal embolization

J. Schofer, P. Musialek et al. TCT 2014

Anti - Embolic Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

Mesh-Covered Stents for Carotid Intervention

Device Designs

Mesh-Covered Stents for Carotid Intervention

Device Designs n=3

Competition Carotid Stents

Terumo/ Microvention	Inspire MD	W.L. Gore	Abbott Vascular		Boston Scientific	Ev3/ Covidien/ Medtronic	Cordis/ Cardinal Health	Invatec/ Medtronic
Roadsaver	CGuard	Gore Carotid Stent	Acculink	XACT	Carotid Wallstent	Protégé	Precise Pro	Cristallo Ideale
0.38 mm²	0.15 mm²	0.44 mm ²	2.36 mm ²	1.89 mm²	1.397 mm²	4.93 mm ²	2.36 mm ²	3.23 mm²
			Bench m	narking by Micro	ovention	6 		
375-500µm	150-180µm	500µm						
			Adver	tising by Inspir	e MD			

Table by Terumo, used with permission

RoadSaver

RoadSaver

MICROVENA

*Not available in the United States.

RoadSaver (Terumo) = Casper (MicroVena)

Images by Terumo / used with permission

RoadSaver: Push-Pull Stent Delivery System

re-sheathable up to 50% stent length release

CE Mark – January 2014

Images courtesy P. Pieniazek / Krakow and Terumo

GORE® Carotid Stent

Open Cell NiTi Frame

Closed Cell 500 µm PTFE lattice on outside of NiTi Frame

Permanently Bound CBAS Heparin on all device surfaces

Courtesy WL Gore & Associates / by permission

GORE® Carotid Stent System Sizing Summary

	GORE® CAROTID STENT PART NUMBER	Unconstrained Stent Dimensions (mm)	Reference Vessel Diameter (mm)	MINIMUM INTRODUCER OR GUIDING SHEATH CATHETER ID
1	GC\$5530	5 x 30	27.45	
	GCS5540	5 x 40	3.7 - 4.5	
	GCS6630	6 x 30		
	GCS6640	6 x 40	4.3 - 3.4	
E Er	GC\$7730	7 x 30	EL (2	0.073" (1.85 mm)
211	GCS7740	7 x 40	5.4 - 6.3	White Tip
	GC\$8830	8 x 30	10.70	
	GCS8840	8 x 40	6.3 - 7.2	
	GCS6830	6 - 8 x 30	15 54 62 72	
	GCS6840	6 - 8 x 40	4.5 - 5.4 x 6.3 - 7.2	
	GC\$9930	9 x 30	7.2 0.1	
	GCS9940	9 x 40	7.2 - 0.1	
	GCS0030	10 x 30		
10	GCS0040	10 x 40	8.1 - 9.0	0.080" (2.03 mm)
6 Fr	GCS7930	7 – 9 x 30		Gray Tip
1	GCS7940	7 - 9 x 40	5.4 - 6.3 x /.2 - 8.1	
	GC\$8030	8 - 10 x 30		
	GCS8040	GCS8040 8 - 10 x 40 6.3 - 7.2 x 8.1		
		Table by WL Gore & Associat	es / used with permission	

9tct2015

NB. The Gore carotid stent is not avialable outside the SCAFFOLD Study

The Gore Stent Delivery System

9tct2015

Attributes

- Single handed delivery
- •5Fr Introducer Sheath Compatible (White Tip)
- •6Fr Introducer Sheath Compatible (Gray Tip)
- •Hypotube Design
 - Allows for complete closure of hemostatic valve
- •135 cm Working Length •30 cm Rx

NB. The Gore carotid stent is not avialable outside the SCAFFOLD Study

*Not available in the United States; available in Europe and a number of other geographies

CGuard[™] Embolic Prevention Stent System

System specifications

Stent type	Nitinol – self expanding			
Micronet	150-180 um			
aperture size	130-160 μΠ			
Guidewire	0.014"			
Stent sizes				
- Diameter	6-10mm			
- Length	20-60mm			

CE Mark – March 2014

CGuard[™] Embolic Prevention Stent System

Images by InspireMD, used with permission
Pore Size

*165µm 375µm

1050µm Closed cell stent

500

μm

1900µm Open cell stent

PTFE = Polytetrafluoroethylene

PET = poliethylenteraphtalat

Mesh-Covered Stents for Carotid Intervention

Data histology / animal

Gore Mesh-Covered Carotid Stent Preclinical Studies

- Canine artery model
- Biologically acceptable tissue response
 - All sidebranches and devices patent through 56 days
 - Full device endothelialization at 30 days
 - Comparatively less medial compression

GORE Stent

Carotid WALLSTENT

Histology and REM after 6 months

Data by Terumo / used with permission

RoadSaver

9tct2015

CGuard EPS 90 days / pig

12-105 LCCA-S 3 13-1689-3 1.25x H&E.tif

9tct2015

CA-S 3 13-1689-3 10x H&E.tif

InspireMD data / by permission

CGuard EPS 30 & 90 days/pig

Mean \pm SD and Median Standard Histomorphology Parameters								
Parameter	Day 30				Day 90			
	BMS (n=3)		CGuard (n=9)		BMS (n=3)		CGuard (n=9)	
Injury (0-3)	0.00 ± 0.01	0.00	0.00 ± 0.01	0.00	0.01 ± 0.02	0.00	0.00 ± 0.01	0.00
Inflammation (0-3)	0.43 ± 0.23	0.51	0.41 ± 0.22	0.36	0.17 ± 0.16	0.11	0.09 ± 0.08	0.07
Neointimal Fibrin (0-3)	1.13 ± 0.23	1.00	0.82 ± 0.37	1.00	0.00 ± 0.00	0.00	0.00 ± 0.00	0.00
Adventitial Fibrosis (0-3)	0.00 ± 0.00	0.00	0.02 ± 0.07	0.00	0.00 ± 0.00	0.00	0.00 ± 0.00	0.00
Neointimal Maturation (0-3)	3.00 ± 0.00	3.00						
Endothelialization (0-4)	3.67 ± 0.42	3.80	3.62 ± 0.35	3.80	4.00 ± 0.00	4.00	4.00 ± 0.00	4.00

BMS = non mesh-covered CGuard nitynol frame; InspireMD data / used with permission

Mesh-Covered Stents for Carotid Intervention

Imaging angio

Roadsaver / Casper

Angio/CAS images courtesy P. Pieniazek / Krakow

Gore Carotid Stent

Angio/CAS images courtesy Dr. C. Schönholz

Angio/CAS images P. Musialek

Mesh-Covered Stents for Carotid Intervention

Imaging Ivus

Initial series of CGuard[™] IVUS studies indicates...

Excellent stent expansion and apposition V
ZERO tissue protrusion though mesh-and-struts V

Mesh-Covered Stents for Carotid Intervention

Imaging oct

RoadSaver

Data by Terumo / used with permission

CGuard™ EPS

Thrombotic material T R A P P E D between the stent MicroNET and the vessel wall

Image Courtesy Dr Juan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

CGuard[™] EPS

Mesh-Covered Stents for Carotid Intervention

Imaging ct

CGuard 5 months follow-up

Images M.Urbanczyk / Z.Moczulski / M.Irzyk / P.Banyś JP2 Hospital, Krakow, Poland

RCCA & RICA

LICA CGuard 5 months follow-up

Images M.Urbanczyk / Z.Moczulski / M.Irzyk / P.Banyś JP2 Hospital, Krakow, Poland

9tct2015

Mesh-Covered Stents for Carotid Intervention

published^{*} Evidence

* full paper or journal abstract by October 2015

JACC: CARDIOVASCULAR INTERVENTIONS © 2015 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

A Prospective, Multicenter Study of a Novel Mesh-Covered Carotid Stent

The CGuard CARENET Trial (Carotid Embolic Protection Using MicroNet)

Joachim Schofer, MD,* Piotr Musiałek, MD, DPhil,† Klaudija Bijuklic, MD,* Ralf Kolvenbach, MD,‡ Mariusz Trystula, MD,† Zbigniew Siudak, MD,†§ Horst Sievert, MD||

ABSTRACT

OBJECTIVES This study sought to evaluate the feasibility of the CGuard Carotid Embolic Protective Stent system—a novel thin strut nitinol stent combined with a polyethylene terephthalate mesh covering designed to prevent embolic events from the target lesion in the treatment of carotid artery lesions in consecutive patients suitable for carotid artery stenting.

BACKGROUND The risk of cerebral embolization persists throughout the carotid artery stenting procedure and remains during the stent healing period.

9tct2015

Evaluation of PET Mesh Covered Stent in Patients with Carotid Artery Disease

The CARENET-Trial

(CAR otid Embolic protection using microNET)

Joachim Schofer (PI) Piotr Musialek (Co-PI) On behalf of the CARENET Investigators

Joachim Schofer, MD,PhD, Hamburg University CardiovascularCenter, Hamburg Germany Piotr Musialek, MD, PhD, Jagiellonian University Medical College at John Paul II Hospital, Krakow, Poland, Ralf Kolvenbach, MD, PhD, Augusta Hospital, Dusseldorf, Germany, Horst Sievert, MD, PhD, Cardiovascular Center Frankfurt, Frankfurt, Germany

CGuard [™] embolic prevention stent

P. Musialek @ TCT 2015

CARENET – Study Design

Prospective, multi-center, all-comer

Objectives:

To evaluate the periprocedural safety and efficacy of the CGuard stent in the treatment of carotid lesions in thirty consecutive patients with symptomatic and asymptomatic carotid artery stenosis, suitable for CAS

Sites:

- Joachim Schofer (PI), Hamburg University Cardiovascular Center
- Piotr Musialek (Co-PI), Jagiellonian University Medical College
- Ralf Kolvenbach, Augusta Hospital
- Horst Sievert, Cardiovascular Center Frankfurt
 Endpoints:
- Acute /30-day Cerebral Embolization by DWI (incidence, volume)
- 30 day MACCE (death, stroke, MI)

CARENET – Study Design

Prospective, multi-center, all-comer

Objectives:

To evaluate the periprocedural safety and efficacy of the CGuard stent in the treatment of carotid lesions in thirty consecutive patients with symptomatic and asymptomatic carotid artery stenosis, suitable for CAS

Sites:

- Joachim Schofer (PI), Hamburg University Cardiovascular Center
- Piotr Musialek (Co-PI), Jagiellonian University Medical College
- Ralf Kolvenbach, Augusta Hospital
- Horst Sievert, Cardiovascular Center Frankfurt

Endpoints:

Acute /30-day Cerebral Embolization by DWI (incidence, volume)

30 day MACCE (death, stroke, MI)

DW-MRI: the <u>unforgiving</u> testimony of what you've done to the TARGET ORGAN...

The Power of DW-MRI...

48h after LICA-CAS

M. Urbanczyk, P. Banys, Dept. Radiology, JP2 Hospital, Krakow, Poland

DW-MRI analysis @ 48 h			
	CARENET (n=27)		
Incidence of new ipsilateral lesions	37.0 %		
Average lesion volume (cm ³)	0.039 ± 0.08		
Maximum lesion volume (cm ³)	0.445		

see patient fluxogram

9tct2015

*External Core Lab analysis (US)

Bijuklic et al. *JACC*, 2012; Bonati et. al, *Lancet Neurol* 2010 + bilateral lesions

DW-MRI analysis @ 48 hours					
	CARENET (n=27)	PROFI (all) (n=62)	ICSS⁺ (n=56)		
Incidence of new ipsilateral lesions	37.0%	66.2 %	68.0%		
Average lesion volume (cm ³)	0.039 1 0.08	.375	-		
Maximum lesion volume (cm ³)	0.445				

≈50% reduction in new ipsilateral lesion incidence

see patient fluxogram

tct2015

*External Core Lab analysis (US)

Bijuklic et al. *JACC*, 2012; Bonati et. al, *Lancet Neurol* 2010 + bilateral lesions

DW-MRI analysis @ 48 hours					
	CARENET (n=27)	PROFI (all) (n=62)	ICSS⁺ (n=56)		
Incidence of new ipsilateral lesions	37.0%	66.2%	68.0%		
Average lesion volume (cm ³)	0.039	0.375	-		
Maximum lesion volume (cm ³)	0.445				

see patient fluxogram

9tct2015

*External Core Lab analysis (US)

Bijuklic et al. *JACC*, 2012; Bonati et. al, *Lancet Neurol* 2010 † bilateral lesions

DW-MRI analysis @ 48 hours				
	CARENET (n=27)	PROFI (all) (n=62)	ICSS⁺ (n=56)	
Incidence of new ipsilateral lesions	37.0%	66.2%	68.0%	
Average lesion volume (cm ³)	0.039	0.375	-	
Maximum lesion volume (cm ³)	0.415	ノ		

>10-fold reduction in cerebral lesion volume

see patient fluxogram

*External Core Lab analysis (US)

Bijuklic et al. *JACC*, 2012; Bonati et. al, *Lancet Neurol* 2010 + bilateral lesions

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

Filter-protected CAS procedures CARENET vs PROFI: DW-MRI analysis

n=27

n=31

* see patient fluxogram Bijuklic et al. *JACC*, 2012;59

9tct2015

J. Schofer, P. Musialek et al. *JACC Intv* 2015;8:1229-34 Bijuklic et al. (manuscript in preparation)

All but one peri-procedural ipsilateral lesions

*External Core Lab analysis (US)

All but one peri-procedural ipsilateral lesions

RESOLVED

DW-MRI analysis @ 30 days*		
Incidence of new ipsilateral lesions	1	V
Average lesion volume (cm ³)	0.08 ± 0.00	
Permanent lesions at 30 days	1	

*External Core Lab analysis (US)

Anti - Embolic Carotid Stent

Plaque protrusion may lead to early and late distal embolization

J. Schofer, P. Musialek et al. TCT 2014

Anti - Embolic Carotid Stent

Effect of the Distal-Balloon Protection System on Stenting Carotid **Microembolization During**

9tct2015

J. Vitek, MD, PhD; Sriram S. Iyer, MD; Leon, MD Nadim Al-Mubarak, MD; Gary S. Roubin, MD, PhD; Jiri Gishel New, MD; Martin B.

CAS (and CEA) are –and will remain– emboli-generating procedures

Figure 1. Microembolic profile during unprotected CAS. The mean MES counts during various phases of the procedure are displayed. Circulation. 2001;104:1999-2002

Effect of the Distal-Balloon Protection System on Stenting arotid During Microembolization

9tCt2015

Iyer, MD; PhD; Sriram S. MD, Leon, MD Vitek, Jiri Martin B. PhD; MD. MD; Roubin, Gishel New, ŝ Nadim Al-Mubarak, MD; Gary

CAS (and CEA) are –and will remain– emboli-generating procedures

Circulation. 2001;104:1999-2002

<u>Prospective evaluation of All-comer peR-</u> cutaneous cArotiD revascularization In symptomatic and increased-risk asymptomatic carotid artery stenosis using CGuard[™] Micronet-covered embolic prevention stent system:

The PARADIGM Study

EuroPCR 2015 (www.europcr.com) and TCT-73 (2015)

Objective

 to evaluate feasibility and outcome of <u>routine</u> anti-embolic stent system use in <u>unselected</u>, <u>consecutive</u> patients referred for carotid revascularization (<u>'all-comer</u>' study)

Methods: The CAS Procedure

- EPD use mandatory; EPD selection according to the 'Tailored CAS' algorithm^{*}
- Liberal postdilatation accepted in order to maximize potential for 'endovascular full reconstruction' (minimizing residual stenosis)
 - NB. 1. DWI evidence of effective MicroNet prevention against cerebral embolization (CARENET/PROFI)
 - 2. Residual stenosis after CAS as independent predictor of in-stent restenosis

Van Laanen J et al. *J Cardiovasc Surg*Cosottini M et al. *Stroke Res*Musialek P et al. *J Endovasc Ther*Wasser K et al. *J Neurol*

* Pieniazek P, Musialek P et al. *J Endovasc Ther* 2008;15:249-62. Cremonesi A et al. *EuroInervention* 2009;5:589-98. Pieniazek P, Musialek P et al. *J Endovasc Ther* 2009;16:744-51.

PARADIGM

Endpoints:

- feasibility of endovascular Tx in unselected referrals using the study device in otherwise routine practice
- device success (able to deliver + implant + <30% DS)
- procedure success (device success w/o clinical compl.) (external neurologist, external non-invasive cardiologist)
- clinical efficacy: MACNE (death/stroke/MI)
- in-stent velocities (Duplex)

- 24-48h - 30 days - 12 months - up to 5y

PARADIGM

 <u>ASYMPTOMATIC</u> patients treated interventionally only if at stroke risk

established lesion-level increased-risk crieria used:

- thrombus-containing
- tight, near-occlusive
- documented progressive
- irregular and/or ulcerated
- contralteral ICA occlusion/stroke
- asymptomatic ipsilateral brain infarct

AbuRahma A et al. *Ann Surg.* 2003;238:551-562. Ballotta E et al. *J Vasc Surg* 2007;45:516-522. Kakkos SK et al. (ACSRS) *J Vasc Surg.* 2009;49:902-909. Lovett JK et al. *Circulation* 2004;110:2190-97 Nicolaides AN et al. *J Vasc Surg* 2010;52:1486-96. Taussky P et al. *Neurosurg Focus* 2011;31:6-17.

Methods (cont'd)

P. Musialek @ TCT 2015

∽tCt2015

EuroPCR 2015 (www.europcr.com) and TCT-73 (2015)

*Dept. of Cardiac & Vascular Dieases, John Paul II Hospital, Krakow, Poland; 10.2014–03.2015

tct2015

P. Musialek @ TCT 2015

Study Flow Chart (2)

73 Patients for carotid revascularization

Clinical characteristics of study patients (n=68)				
age, mean±SD (min–max)	69 ±7 (55–83)			
male, % (n)	66% (45)	-C		
symptomatic, % (n) symptomatic ≤ 14 days, % (n) acutely symptomatic (emergent CAS) , % (n)	53% (36) 28% (19) 9% (6)			
index lesion (CAS) , % (n) RICA LICA RICA+LICA	52% (35) 44% (30) 4% (3)			
CAD, % (n)	65% (44)			
h/of MI, % (n)	27% (18)			
CABG or PCI in the past, % (n)	38% (26)			
PCI as bridge to CAS, % (n)	16% (11)			
AFib (h/o or chronic), % (n)	6% (4)			
diabetes, % (n)	35% (24)			
h/o neck or chest radiotherapy, % (n)	4% (3)			

O

D

EuroPCR 2015 (www.europcr.com) and TCT-73 (2015)

9tct2015

PARADIGM: Results (1)

- Percutaneous treatment 100% using the intended MicroNet-covered embolic prevention stent system CGuard (ie, no other stents used during the study period)
- Device success 100%
 Procedure success 100%
- Transient Dopamine infusion
- Debris in EPD
- Access site complications
- Vascular plug closure

- **19%** (n=14)
 - 18% (n=13)
 - **0%** (n=0)
 - **45%** (n=32)

PARADIGM: Results (2)

Index lesion qualitative characteristics (n=71 lesions)

	All (n=71)	Symptomatic (n=37)	Asymptomatic (n=34)	р
thrombus, % (n)	15% (11)	24% (9)	6% (2)	0.025
near occl./string, % (n)	21% (15)	30% (11)	12% (4)	0.084
proggressive*, % (n)	27% (19)	11% (4)	44% (15)	0.003
ulcerated, % (n)	41% (29)	46% (17)	35% (12)	0.470
irregular, % (n)	72% (51)	65% (24)	79% (27)	0.197
contralateral occl. , % (n)	17% (12)	22% (8)	35% (12)	0.291
highly calcific, % (n)	23% (16)	14% (5)	35% (12)	0.050
asymptomatic ipsilat. brain embolization/infarct	N/A	N/A	32% (11)	N/A

* verified on imaging

CoreLab-Quantified

- ICA reference diameter
 Lesion length
- **4.99 ± 0.36mm** (from 4.27 to 6.02mm) **19.9 ± 5.8mm** (from 8.19 to 30.25mm)

EuroPCR 2015 (www.europcr.com) and TCT-73 (2015)

PARADIGM: Results (3)

Index lesion quantitative characteristics (n=71 lesions)

	All (n=71 lesions)	Symptomatic n=37	Asymptomatic n=34	р
Before CAS				
PSV, m/s	3.8±1.3	3.7±1.1	3.8±1.5	0.862
EDV, m/s	1.3 ± 0.7	1.4 ± 0.6	1.3 ± 0.8	0.687
Diameter stenosis % (QA)	82±9	79±9	84 ± 9	0.021
CAS				
EPD type Proximal* Distal**	35% (25) 65% (46)	44% (16) 56% (21)	26% (9) 74% (25)	0.092
post-dilat balloon* peak pressure, mmHg	18.4±3.4	17.5±3.6	19.2 ± 2.9	0.037
After CAS				
Stent length (QA) [§] Nominal 30mm (min-max) Nominal 40mm (min-max)	29.66 ± 0.30 (28.73-30.07) 39.73 ± 0.34 (38.88-40.22)	29.66±0.28 (29.02-30.07) 39.69±0.41 (38.88-40.22)	29.65 ± 0.32 (28.73-30.02) 39.77 ± 0.28 (39.14-40.04)	NA
Residual diam. stenosis	7 ± 4%	5 ± 4%	7 ± 5%	0.257
in-stent PSV, m/s	0.70±0.28	0.66±0.29	0.74 ± 0.27	0.266
in-stent EDV, m/s	0.17±0.07	0.17±0.07	0.18±0.07	0.457

* Emboshield (n=7); FilterWire (n=14); Spider (n=25) ** Gore FlowReversal (n=4) or flow reversal with MoMa (n=21)

(NB. mean flow reversal time was 6min 48s, from 5min 18s to 11min 2s) # ø 4.5mm (n=5); ø 5.0mm (n=36); ø 5.5mm (n=29); ø 6.0mm (n=1); § 30mm in 51 lesions; 40mm in 18 lesions (2 other lesions required two stents each)

PARADIGM: Results (4)

Death/stroke/MI @ 48h 0%

Death/stroke/MI @ 30d 0%

EuroPCR 2015 (www.europcr.com) and TCT-73 (2015)

P. Musialek @ TCT 2015

Procedure - Relevant Information

Name	RoadSaver aka Casper	Gore [®] Carotid Stent	CGuard™ Embolic Prevention Sten
Re-sheathable ?	yes*	no	no
Crossing profile	5F	5F (smaller d 6F (larger d	liam) 6F iam)
Foreshortening	yes	unknown**	no [#]
Stent placement accuracy	_	N/D	++ [#]
Ability to eliminate residual stenosis	N/D	N/D	yes [#]
Externally-analysed systematic DW MRI study data	unknown	unknown	yes ^{##}

States *up to 50% released length # PARADIGM PCR2015 and TCT-73 **probably not substantial ## CARENET JACC Intv 2015;8:1229 N/D = not determined Second

OCRF CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation P. Musialek @ TCT 2015

on-going Studies

ClinicalTrials.gov

A service of the U.S. National Institutes of Health

Sponsors and Collaborators

Flanders Medical Research Program

Investigators

Principal Investigator: Marc Bosiers, MD

CLEAR-ROAD; a Physician-initiated Carotid Trial Investigating the Efficacy of Endovascular Treatment of Carotid Arterial Disease With the Multi-layer RoadSaver Stent

This study is currently recruiting participants. (see Contacts and Locations)

Verified August 2015 by Flanders Medical Research Program

Sponsor: Flanders Medical Research Program

Information provided by (Responsible Party): Flanders Medical Research Program

Purpose

The objective of this clinical investigation is to evaluate the clinical outcome (up to 12 months) of treatment by means of stenting with the RoadSaver (Terumo) in subjects at high risk for carotid endarterectomy requiring carotid revascularization due to significant extra-cranial carotid artery stenosis.

Primary Outcome Measures:

30-day rate of Major Adverse events (MAE)

Study Type: Interventional Study Design: Endpoint Classification: Efficacy Study Intervention Model: Single Group Assignment Masking: Open Label Primary Purpose: Treatment

Estimated Enrollment: 100 Study Start Date: April 2015 Estimated Study Completion Date: May 2017 Estimated Primary Completion Date: April 2016 (Final data collection date for primary outcome measure)

50% patient cohort recruitment threshold crossed V

ClinicalTrials.gov Identifier: NCT02529345

First received: April 27, 2015 Last updated: August 19, 2015 Last verified: August 2015 History of Changes

9tct2015

Italian registry - Roadsaver

RoadSaver Italian registry - Preliminary results

3 Centers Cotignola, Siena, Torino

more than 100 cases

Prof. Alessandro Cappelli @ CIRSE 2015, Lisbon

Vascular and Endovascular Surgery Unit - University of Siena

Italian registry - Preliminary results

Subgroup analysis - MR

 Magnetic Resonance evaluation of cerebral parenchyma before and 24 hours post-op

New lesions in **1 case** @ 24h (n=3 in the ipsilateral and n=2 in controlateral hemisphere GORE[®] Carotid Stent Clinical Study for the treatment of carotid Artery stenosis in patients at increased risk For adverse events From carOtid enDarterectomy

The Gore SCAFFOLD Clinical Study

- Pls: P.A. Schneider and W.A. Gray
- Number of Subjects

312 subjects (max 40 at each site)

• Primary Endpoint

ClinicalTrials.gov

NCT # 01901874

Composite of Major Adverse Events (MAE) defined as death, any stroke, or myocardial infarction through 30 days post index procedure plus ipsilateral stroke between 31 days and 1 year

*All primary endpoint events will be determined by the study Clinical Events Committee

- 50% patient cohort recruitment threshold crossed
- Data expected 2017

CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation P. Musialek @ TCT 2015

Physician-initiated prospective Italian Registry of carotid stenting with the <u>C-Guard</u> mesh-stent: the IRON-Guard registry. Rationale and design Announced: J CARDIOVASC SURG 2015;56:787-91

CO-Principal Investigators

Carlo Setacci, *Siena* Francesco Speziale, *Rome*

Investigators

Guido Bellandi, *Arezzo* Piergiorgio Cao, *Rome* Renato Casana, *Milan* Patrizio Castelli, *Varese* Roberto Chiesa, *Milan* Gioachino Coppi, *Modena* Alberto Cremonesi, *Cotignola* Gianfranco Fadda, *Nuoro* Augusto Farina, *Crema* Paolo Frigatti, *Udine* Andrea Gaggiano, *Asti* Franco Grego, *Padova* Massimo Lenti, *Perugia* Nicola Mangialardi, *Rome* Giustino Marcucci, *Civitavecchia* Stefano Michelagnoli, *Florence* Giovanni Nano, *Milan* Franco Nessi, *Turin* Claudio Novali, *Cuneo* Giancarlo Palasciano, *Tricase* Domenico Palombo, *Genoa* Giovanni Paroni, *San Giovanni Rotondo* Francesco Pompeo, *Pozzilli* Claudio Rabbia, *Turin* Massimo Sponza, *Udine* Andrea Stella, *Bologna* Enrico Vecchiati, *Reggio Emilia*

Planned enrollment: n = 200 patients

Primary endpoint:

clinical – MAE death/stroke/MI ≤ 30 days

PARADIGM – Extend (aka PARADIGM-101)

Cardiovascular and Interventional Radiological Society of Europe

Patient #101 in 'PARADIGM-EXTEND' (a.k.a. 'PARADIGM 101') subacute stroke

PI: P. Musialek / Krakow

remaining Unknowns

Remaining Unknowns (1)

• Is there a **product/design-specific "gradient"** in the embolic prevention efficacy?

Remaining Unknowns (1)

• Is there a **product/design-specific "gradient"** in the embolic prevention efficacy?

tct2015

Remaining Unknowns (1)

• Is there a **product/design-specific "gradient"** in the embolic prevention efficacy?

Gtct2015

Remaining Unknowns (2)

- Large-scale (muli-center, multi-hundred patient), controlled clinical endpoint data?
- Long-term treatment durability / 'no restenosis' proof
 NB. so far no worrying signal

- Role in open (CEA) vs. endo (CAS) balance
- Role in **primary** stroke prevention

Conclusions

Clinical evidence in October 2015...

- I peer-reviewed, published clinical study
 - multicenter, single-arm
 - <u>DWI</u> controlled (24-48h, 30d, external analysis) CARENET, JACC Intv 2015;8:1229-1234

Clinical evidence in October 2015...

- 1 peer-reviewed, published clinical study
 - multicenter, single-arm
 - <u>DWI controlled (24-48h, 30d, external analysis)</u> CARENET, JACC Intv 2015;8:1229-1234
- several moderately-sized investigator-initiated single arm studies with <u>clinical endpoints</u>
 - 1 with full 30-day data available in all-comers (others underway or planned)

Mesh-Covered Stents for Carotid Intervention

Clinical evidence in October 2015...

- 1 peer-reviewed, published clinical study
 - multicenter, single-arm
 - <u>DWI</u> controlled (24-48h, 30d, external analysis) CARENET, JACC Intv 2015;8:1229-1234
- several moderately-sized investigator-initiated single arm studies with <u>clinical endpoints</u>
 - 1 with full 30-day data available in all-comers (others underway or planned)
 - > 300pts single-arm <u>clinical-endpoint</u> study due to report in 2017

Mesh-Covered Stents for Carotid Intervention

Clinical evidence in October 2015...

- 1 peer-reviewed, published clinical study
 - multicenter, single-arm
 - <u>DWI</u> controlled (24-48h, 30d, external analysis) CARENET, JACC Intv 2015;8:1229-1234
- several moderately-sized investigator-initiated single arm studies with <u>clinical endpoints</u>
 - 1 with full 30-day data available in all-comers (others underway or planned)
- > 300pts single-arm <u>clinical-endpoint</u> study due to report in 2017
- mesh-covered carotid stents have individual, specific characteristics but no comparative studies... (and such may never be conducted)

Mesh-Covered Stents for Carotid Intervention

Clinical evidence in October 2015...

- I peer-reviewed, published clinical study
 - multicenter, single-arm
 - <u>DWI</u> controlled (24-48h, 30d, external analysis) CARENET, JACC Intv 2015;8:1229-1234
- several moderately-sized investigator-initiated single arm studies with <u>clinical endpoints</u>
 - 1 with full 30-day data available in all-comers (others underway or planned)
- > 300pts single-arm <u>clinical-endpoint</u> study due to report in 2017
- mesh-covered carotid stents have individual, specific characteristics but no comparative studies... (and such may never be conducted)

This concept has been desired.

And it works.

This is the future of Carotid Artery Stenting

This concept has been desired.

And it works.

This is the future of Carotid Artery Stenting

This concept has been desired.

And it works.

This is the future of Carotid Artery Station? 2015

NEW PARADIGM AHEAD

Embolic-Prevention Stent Image Courtesy Dr Juan Rigla, MD PhD Perceptual Imaging Lab, Univerity of Barcelona

Carotid Revascularization 2015⁺ R E A L I T Y

Frank J. Veith, MD, FACS, c,d Athens, Greece; London, United Kingdom; Cleveland, Ohio; and New York, NY Improved technology for CAS — better EPDs (flow reversal and proximal occlusion) and better stents (membrane-covered, ultra-closed cell, and biodegragable). Several issues may improve CAS outcomes, such as the introduction of new and better stents. An ex vivo study showed that use of a polyurethane membrane-covered stent resulted in lower cerebral embolization rates.69

November 2010 JOURNAL OF VASCULAR SURGERY