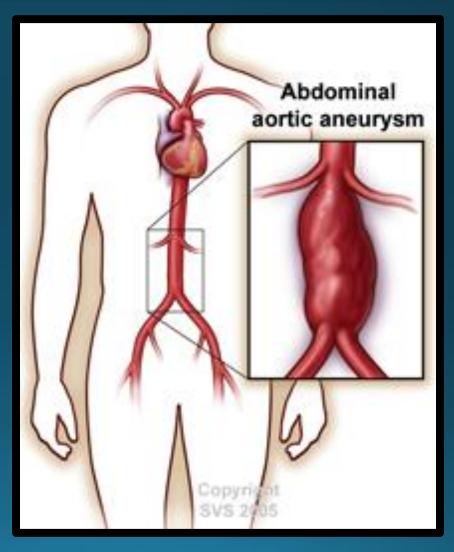

Open vs. Endovascular AAA repair: Factors in Clinical Decision Making

Virendra I. Patel, MD MPH Associate Professor of Surgery

Vascular Surgery and Endovascular Interventions



Disclosures

• None

www.vascularweb.com

SVS Guidelines

The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm

Elliot L. Chaikof, MD, PhD,^a Ronald L. Dalman, MD,^b Mark K. Eskandari, MD,^c Benjamin M. Jackson, MD,^d W. Anthony Lee, MD,^e M. Ashraf Mansour, MD,^f Tara M. Mastracci, MD,^g Matthew Mell, MD,^b M. Hassan Murad, MD, MPH,^h Louis L. Nguyen, MD, MBA, MPH,ⁱ Gustavo S. Oderich, MD,^j Madhukar S. Patel, MD, MBA, ScM,^{a,k} Marc L. Schermerhorn, MD, MPH,^a and Benjamin W. Starnes, MD,^l Boston, Mass; Palo Alto, Calif; Chicago, III; Philadelphia, Pa; Boca Raton, Fla; Grand Rapids, Mich; London, United Kingdom; Rochester, Minn; and Seattle, Wash

- Symptoms: Asymptomatic -> Rupture
- Size:
 - Rate of growth:Size consensus:

Aortic Center

>1cm/yr. 5.5 cm men 5 cm women >4 cm select

J Vasc Surg 2018;67:2-77

Treatment Options

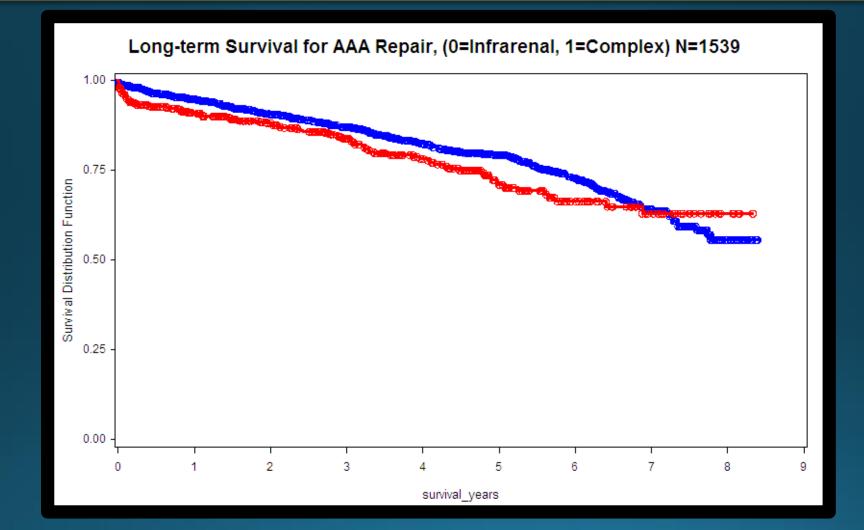
- Traditional open surgical repair
- Endovascular stent graft repair

Regional Open Repair Results

Contemporary outcomes of open complex abdominal aortic aneurysm repair

Sarah E. Deery, MD,^a Robert T. Lancaster, MD, MPH,^a Donald T. Baril, MD,^b Jeffrey E. Indes, MD,^c Daniel J. Bertges, MD,^d Mark F. Conrad, MD, MMSc,^a Richard P. Cambria, MD,^a and Virendra I. Patel, MD, MPH,^a Boston, Mass; Pittsburgh, Pa; New Haven, Conn; and Burlington, Vt

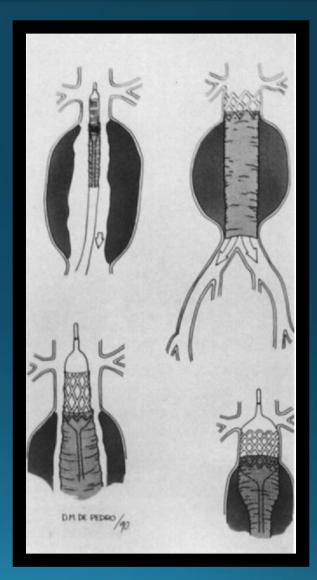
• VSGNE regional quality initiative (2003-2011)


- 14 Hospitals / 79 Surgeons
 - Mean = 3.9±1.6/yr.

J Vasc Surg 2016;63:1195 - 200

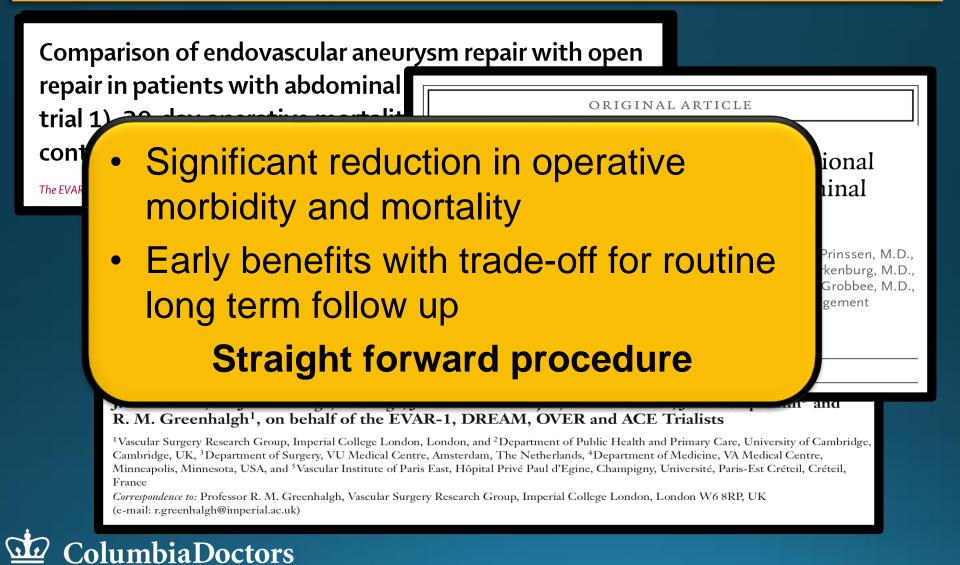
Outcomes

1 - 2% in referral-based reports


5 - 7% in population-based series

Endovascular Repair - EVAR

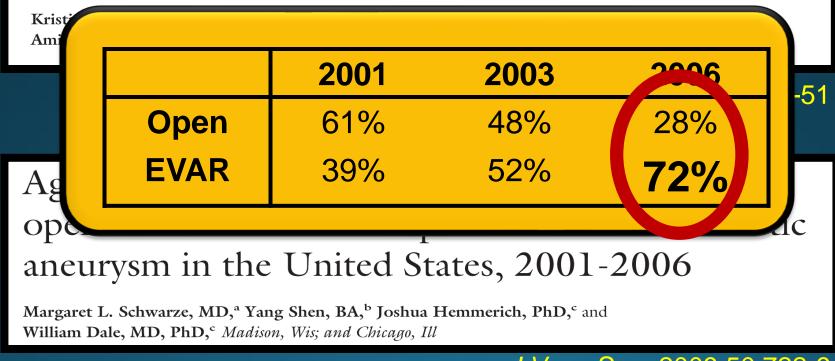
In the early 1990s, Volodos in the Ukraine and Parodi, Palmaz, and Barone in Argentina introduced a less invasive endovascular method for AAA repair


COLUMBIA UNIVERSITY College of Physicians and Surgeons

J NewYork-☐ Presbyteriar

Level I EVAR Results

Aortic Center



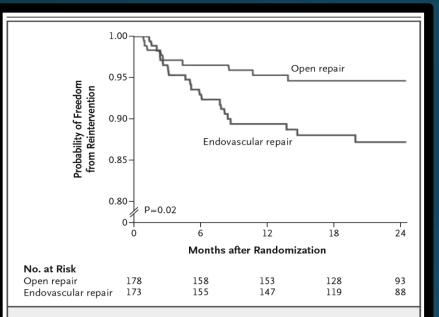
EVAR - Trends

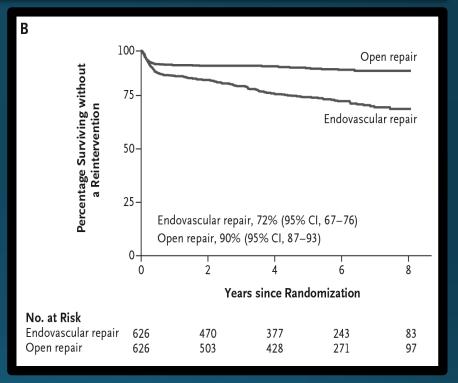
Decrease in total aneurysm-related deaths in the era of endovascular aneurysm repair

J Vasc Surg 2009;50:722-9

COLUMBIA UNIVERSITY College of Physicians and Surgeons

EVAR – Intermediate Failures




Figure 3. Kaplan–Meier Estimates of Freedom from Reintervention among Patients Assigned to Undergo Open or Endovascular Aneurysm Repair.

DREAM Trial

<u>13% ~ 2yrs.</u>

NEJM 2005;352:2398-405

Aortic Center

EVAR I Trial ~40% ~ 8yrs. *NEJM 2010*

Late Failures

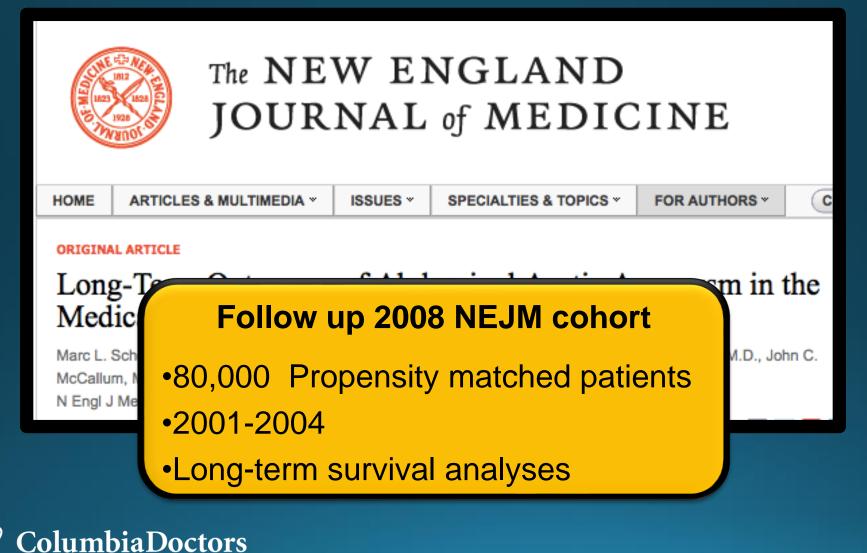
Endovascular versus open repair of abdominal aortic aneurysm in 15-years' follow-up of the UK endovascular aneurysm repair

Aneurysm-related mortality							
All patients	56/626 (9%)	1.1	45/626 (7%)	0.9	1.24 (0.84–1.83)	1.31 (0.86–1.99)	0.21
0–6 months	14/626 (2%)	4.6	30/626 (5%)	10.0	0.46 (0.24-0.87)	0.47 (0.23-0.93)	0.031
>6 months to 4 years	12/599 (2%)	0.6	8/581(1%)	0.4	1.48 (0.60–3.62)	1.46 (0.56 0.83)	0.44
>4–8 years	14/474 (3%)	0.9	4/464 (1%)	0.2	3·46 (1·14-10·52)	3.11 (0.99–9.72)	0.05
>8 years	16/339 (5%)	1.3	3/333 (1%)	0.2	5.50 (1.60–18.89)	5.82 (1.64–20.65)	0.0064

Prof Roger M Greenhalgh, /ascular Surgery Research Group, Imperial College London, London W6 8RP, UK r.greenhalgh@imperial.ac.uk See Online for appendix

for aneurysm-related mortality, p=0.031), but beyond 8 years of follow-up open-repair had a significantly lower mortality (adjusted HR 1.25, 95% CI 1.00–1.56, p=0.048 for total mortality; and 5.82, 1.64–20.65, p=0.0064 for aneurysm-related mortality). The increased aneurysm-related mortality in the EVAR group after 8 years was mainly attributable to secondary aneurysm sac rupture (13 deaths [7%] in EVAR vs two [1%] in open repair), with increased cancer mortality also observed in the EVAR group.

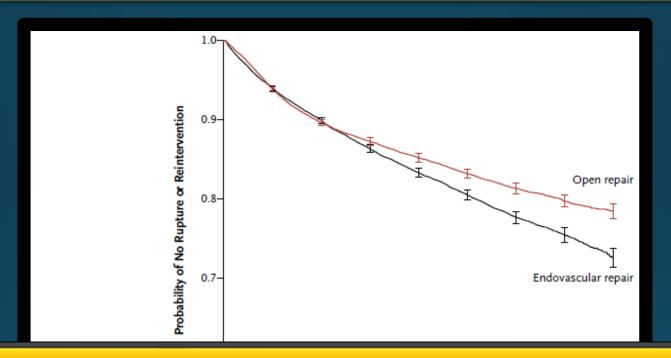
Interpretation EVAR has an early survival benefit but an inferior late survival compared with open repair, which needs to be addressed by lifelong surveillance of EVAR and re-intervention if necessary.



COLUMBIA UNIVERSITY __ NewYork-College of Physicians and Surgeons 7 Presbyterian

Lancet 2016;38:2366-74

Late Failures - Medicare



Aortic Center

NEJM 2015; 373:328 - 338

Late Failures - Medicare

Rupture risk increases over time in patients treated with EVAR

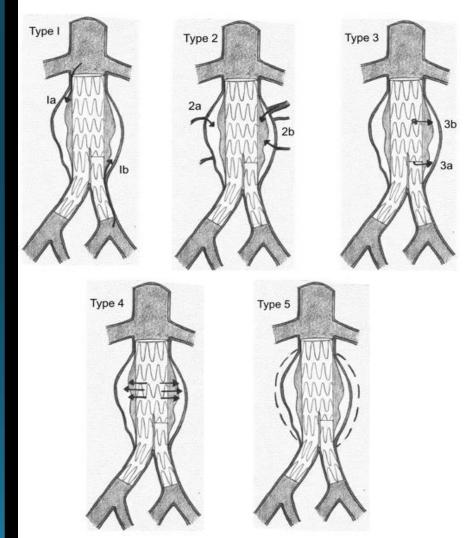
COLUMBIA UNIVERSITY _ Ne College of Physicians and Surgeons 7 Pro

NEJM 2015; 373:328 - 338

Endovascular Graft Systems: Letter to Health Care Providers - Type III Endoleaks Associated with Use – 9/28/2017

•Report any of the following to MedWatch, the FDA Safety Information and Adverse Event Reporting Program Online Voluntary Reporting Form:

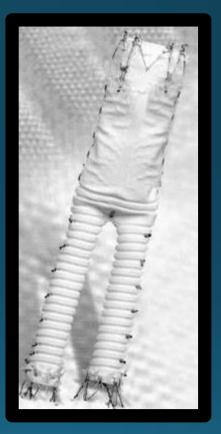
- early or late device-related adverse events—including Type IIIa and IIIb endoleaks—associated with the use of endovascular graft systems in EVAR;
- device-related adverse events that occur as a result of a secondary intervention to treat Type III endoleaks.

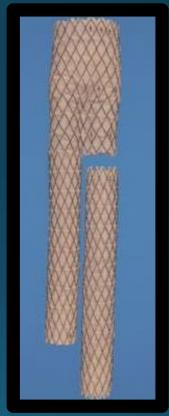


www.fda.gov

Causes of Failures

Endoleaks Type I and III need repair Type II most common - ?benign?


COLUMBIA UNIVERSITY College of Physicians and Surgeons


→ NewYork-

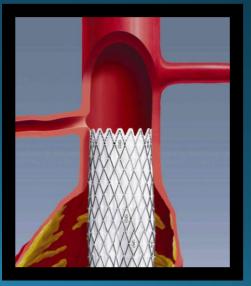
Causes of Failures

Component problems Separation Fabric porosity Material failure

EVAR - Anatomic Requirements

- Proximal neck angulation > 60°
 70% complication rate
- Optimal neck length
 - Ideal > 1.5cm (longer better)
- Neck quality
 - No thrombus
 - Eccentric calcium
 - Normal aorta

Strict IFU requirements for each device


COLUMBIA UNIVERSITY College of Physicians and Surgeons

Causes of Failures

Neck Failure

- Neck degeneration
 - Outward remodeling
 - Large diameter grafts likely
 - treating diseased vessel
- Device migration / disruption

IFU Violations

Vascular Medicine

Predictors of Abdominal Aortic Aneurysm Sac Enlargement After Endovascular Repair

Andres Schanzer, MD; Roy K Mohammad H.

Background—The majority of infi with endovascular methods. Bas patient selection for endovascul compliance with anatomic guide post-EVAR AAA sac enlargement

Of 10,228 EVAR Patients, Only 42% Met 15mm Infrarenal Neck Length Criteria

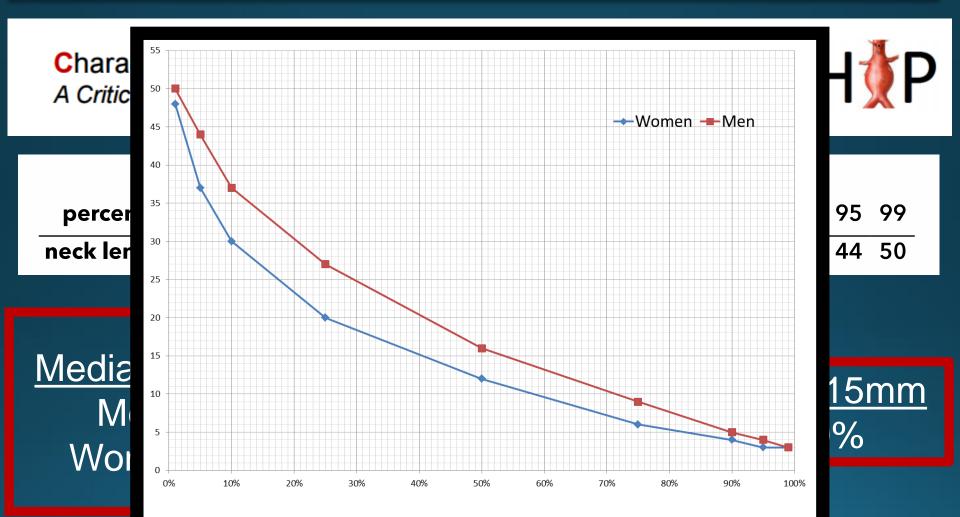
Methods and Results—Patients with pre-Lyvric and a least 1 post-Lyvric compared confography scar were identified from the M2S, Inc. imaging database (1999 to 2008). Preoperative baseline aortoiliac anatomic characteristics were reviewed for each patient. Data relating to the specific AAA endovascular device implanted were not available. Therefore,

Short Infrarenal Neck Length is an Independent Predictor of Type IA Endoleak

conservative published anatomic tcome was post-EVAR AAA sac had a maximum AAA diameter only 42% of patients had anatomy most liberal definition of device dependent predictors of AAA sac c neck angle >60°, and common

nes was low and post-EVAR aneurysm

sac enlargement was high, raising concern for long-term risk of aneurysm rupture. (Circulation. 2011;123:2848-2855.)


Key Words: abdominal aortic aneurysm
endovascular procedures
graft

COLUMBIA UNIVERSITY College of Physicians and Surgeons

Circulation 2011; 123:2848-2855)

Diverse Morphologies

ColumbiaDoctors *Aortic Center*

Clinical Decision Making

Given failure (ARM) of EVAR, how
 should we decide on how best to treat
 patients → OPEN vs. EVAR?

Decision making - Etiology

- Degenerative (>90%)
- Inflammatory endo
- Dissection likely open
- Traumatic endo
- Congenital / connective open
- Mycotic / Infectious open

COLUMBIA UNIVERSITY __ NewYork-College of Physicians and Surgeons 7 Presbyteria

Decision Making - Anatomy

• Endoleak risk:

- Increases with patent lumbar pairs
- IMA patency
- ? Anti-coagulation

Ideal neck anatomy:

- Longer better
- Avoid angulation
- Larger diameter = abnormal aorta

ColumbiaDoctors

Aortic Center

Decision Making - Survival

 Young patients with prolonged life expectancy are more likely to suffer ARM with EVAR

- ESRD poor survival
- Age >80 lower survival
- Advanced cardiac / pulmonary disease

A randomized controlled trial of endovascular aneurysm repair versus open surgery for

- Prospective Randomized
- High volume centers
- Low and moderate risk patients
- 316 patients --> 3 yrs. follow up
- Open repair as safe as EVAR at 30 days
- 3 yr. results favor Open repair ColumbiaDoctors

Aortic Center

Decision Making - Risks

Risk stratification tools should be used to guide clinical decision making

Eslami NSQI

Description of a risk pre postoperative mortality aneurysm repair

Mehammad H. Eclami MD. MDH^{a,} Dr

- NSQIP 2005-20
- 1(76% EVAR /
- 18917 procedu
- All elective pro
- Mortality 1.7%

- Age > 70
- Female gender
- Functional dependence
- COPD
- MI
- Vascular disease
- Weight loss
- Creatinine >1.5, >2.0
- Hct > 30

COLUMBIA UNIVERSITY College of Physicians and Surgeons

Variables	Points	
Treatment		
OAR	5	
EVAR	0	
Age		
Age: ≥70 years	4	
Age $<$ 70 years	0	
Sex		ve m
Female	2	r eleo
Male	0	elec
Functionally independent		
No (dependent patient)	4	
Yes	0	
Comorbidities		ybin, P
COPD	2	
Myocardial disease	1	
Peripheral vascular disease	1	
Weight loss		
Yes	5	
No	0	
Laboratory values		
Cr, mg/dL		
<1.5	0	
≥1.5-2	2	
≥2	3	
HCT, mg/dL		
≥30	0	
<30	4	
ASA classification		
Mild	0	
Severe	1	
Life-threatening/moribund	4	
ASA, American Society of Anesthesiology; COPD, chronic ob		

lod						
	Sum of points	POD probability, %	Proportion of subjects with points	Sensitivity	Specificity	
	0	0.25	1.4	0.0000	0.9999	
ve m	1	0.31	6.7	0.0000	0.9999	
	2	0.38	5.4	0.0000	0.9998	
eleo	3	0.48	3.4	0.0036	0.9993	
	4	0.59	4.6	0.0036	0.9987	
	5	0.74	12.3	0.0109	0.9983	
	6	0.92	13.3	0.0182	0.9975	
ybin, P	7	1.14	10.6	0.0364	0.9957	
	8	1.41	8.8	0.0618	0.9927	
	9	1.75	6.6	0.0800	0.9889	
	10	2.17	6.7	0.1273	0.9811	
	11	2.68	4.8	0.1818	0.9705	
	12	3.31	4.6	0.2509	0.9534	
	13	4.09	3.4	0.3164	0.9309	
	14	5.04	2.3	0.4036	0.8979	
	15	6.19	1.8	0.4764	0.8522	
	16	7.59	1.1	0.5455	0.8041	
	17	9.27	0.8	0.6291	0.7370	
	18	11.28	0.4	0.7091	0.6708	
	19	13.66	0.3	0.7782	0.5827	
	20	16.44	0.2	0.8473	0.4758	
	21	19.66	O.1	0.8982	0.3412	
	22	23.34	<0.1	0.9527	0.2174	
	23	27.48	0.1	0.9636	0.1710	

pulmonary disease: *Cr.* creatinine: *EVAR.* endovascular abdominal aortic aneurysm (AAA) repair: *HCT.* hematocrit: *OAR.* open AAA repair. Aortic Center

50

J Vasc Surg 2017;65:65-75

VSGNE / VQI Model

From the New England Society for Vascular Surgery

External validation of Vascular Study Group of New England risk predictive model of mortality after elective abdominal aorta aneurysm repair in the Vascular Quality Initiative and comparison against established models

• VSGNE 2003 – 2012

4431 pts. / 1.4% mortality

• VQI 2010 – 2015

16989 / 0.9% mortality

COLUMBIA UNIVERSITY

J Vasc Surg 2018;67:143-50

CrossMark

VSGNE / VQI Model

5

Parameter	Poi	ints	
Treatment			
EVAR			
OAR (infrarenal)			
OAR (suprarenal)	Points	Probability of mortality, %	Proposed risk designation
Aneurysm size, mm			
<65	0	0.12	Low-risk group
≥ 65	1	0.20	
Age, years	2	0.34	
≤75	3	0.59	
>75	4	1.00	
Gender	5	1.71	Medium-risk group
Male	6	2.91	
Female	7	4.90	
Comorbidities	8	8.14	High-risk group
Myocardial disease	9	13.2%	
Cerebrovascular disease	10	20.75	
Chronic obstructive pulmonary disease	11	31.05	Prohibitive high-risk group
Laboratory value	12	43.63	
Creatinine, mg/dL	13	57.10	
<1.5	14	69.59	
1.5 to <2			
≥2	2		
EVAR, Endovascular aneurysm repair; OAR, open and	eurysm repair.		
Aortic Center		J Vas	sc Surg 2018;67:143-50

- We are over treating with EVAR
- Risk stratification tools should be used to guide clinical decision making

- Low / Moderate risk patients considered open repair at high volume centers

 Especially true for young patients given long term ARM with EVAR
- EVAR patients have increased long term risk:
 Careful monitoring of patients is essential

COLUMBIA UNIVERSITY

Aortic Center 1-844-RxAorta www.columbiasurgery.org/aortic

Thank You!!