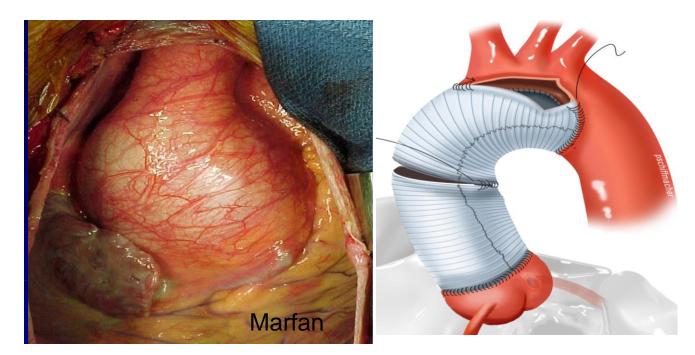
TCT 2018: Latest TEVAR and EVAR Strategies Aortic Arch Aneurysm:

Management and Treatment Options

Nimesh D. Desai MD PhD


Associate Professor of Surgery, University of Pennsylvania Co-Director, Penn Thoracic Aortic Surgery Program Co-Chair, Society of Thoracic Surgeons Aortic Surgery Task Force

Disclosures

- EVERYTHING is OFF-Label...
- Investigator
 - Gore
 - Medtronic
 - Cook
 - Edwards
 - Abbott
- Speaking Honoraria:
 - Abbott
 - Gore
 - Medtronic
 - Terumo Aorta
 - Edwards

Who does NOT need Ascending /Arch TEVAR: Congenital Aortic Syndromes – Ascending only pathology

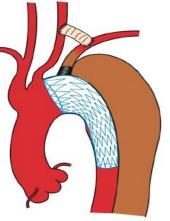
<2% Mortality/Stroke for straight forward Ascending/Hemiarch +/- Root in experienced centers Who is Eligible for Branched Graft Therapies in the Aortic Arch?

Distal Arch Aneurysm Zone 2 Landing

Saccular Arch Aneurysm

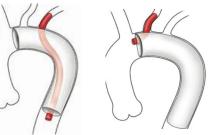
ascending LZ

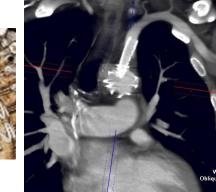
Zone



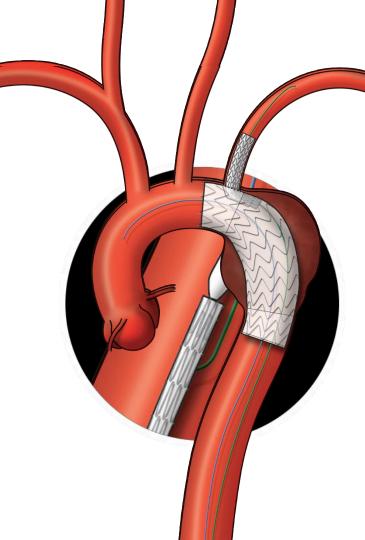
Residual Dissection after Type A repair

Extending TEVAR to Zone 2: Coverage of the Left Subclavian Artery


- Extension of the proximal landing zone
 - Proximal aneurysm extent
 - Angulated arch
 - Traumatic aortic injuries
 - Type B dissection
- Options
 - LCC-LSCA bypass
 - Parallel Grafts
 - In situ Fenestration

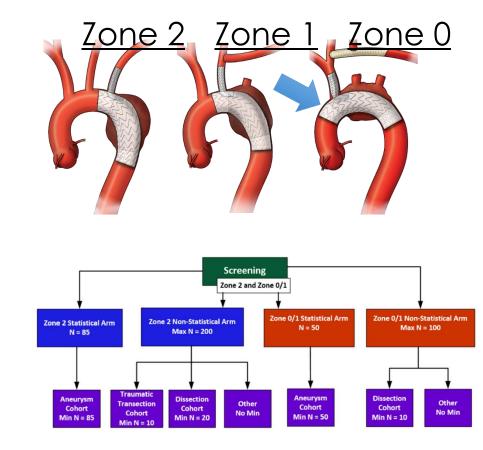


Parallel Grafts



In-situ fenestration

GORE TAG Thoracic Branch Endoprosthesis



Gore TBE EARLY FEASIBILITY: Summary of Early Results

- 31 Zone 2, 9 Zone 0
- 100% Technical success
- 100% Survival at 1 month
- Peri-Procedural Stroke
 - 3.3% (1/31) Zone 2
 - 22.2% (2/9) Zone 0/1
- Side Branch Patency
 - 1/31 Zone 2 patency loss
 - No loss of patency in Zone 0
- NOW in PIVOTAL
 - >200pts enrolled

Zone 2 Branched TEVAR Gore TBE – Residual Type A

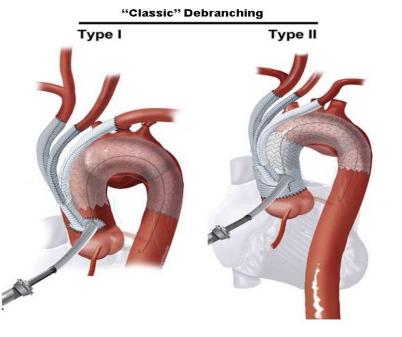
Medtronic Valiant Mona LSA Early Feasibility

Delivery System

- Two wire system
 - Main/primary aortic tracking wire

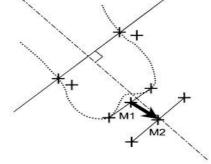
External Branch

- LSA cannulation wire
- Pre-cannulated LSA cuff
- Tip capture for precise MSG delivery

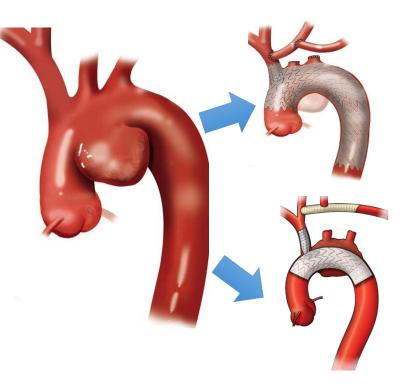

Zone 0/1 Landing

Residual Type A s/p repair

Saccular Mid Arch

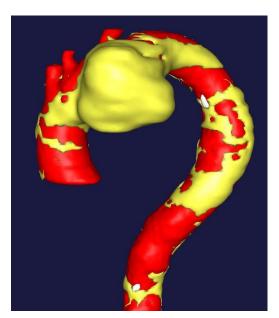


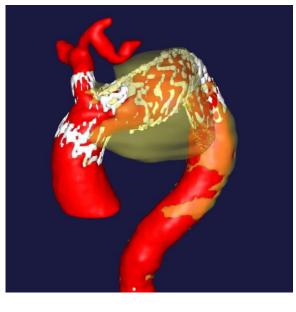
Zone 0 Landing: The problem of TEVAR in the proximal Aorta

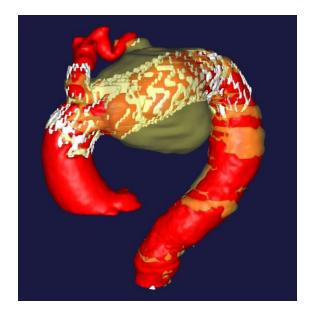

Systolic-diastolic motion

- at the root base 4-7mm
- at the brachiocephalic

trunk 3-4 mm Robicsek et al. 2004


Systolic-diastolic twist of 6°


Gore TBE – Single Branch in Zone O Proximal Arch Saccular Aneurysm



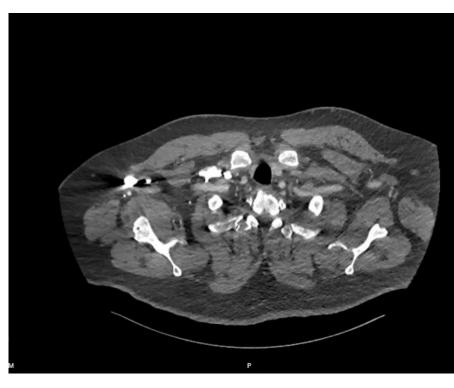
Arch Aneurysm Zone 0 Treatment

Pre-Op

30 Days Post Op

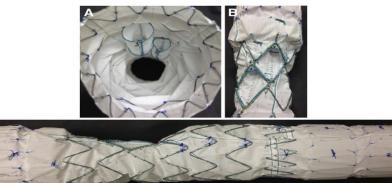
2 Years Post Op

Bolton Relay Dual Branch – Internal Branch



Center	Investigator	City	Country
Ospedale San Camillo Forlanini	Prof. Cao	Roma	Italy
Ospedale G. Brotzu	Dr. Camparini	Cagliari	Italy
Hopital Rangueil	Prof. H. Rousseau	Toulouse	France
Osaka University Hospital	Dr. Kuratani	Osaka	Japan
UMC Utrecht	Prof. F. Moll – dr. Van Herwaarden	Utrecht	Netherlands
Hopital George Pompidou	Dr. J. M. Alsac	Paris	France
Hospital UCA de Oviedo	Dr. M. Alonso	Oviedo	Spain
St. Mary's Hospital - London	Dr. M. Hamady	London	United Kingdom
Linköping University Hospital	dr. C. Forssell	Linköping	Sweden

	Total
N	26
Male	69,2%
Mean Age	72y
ТАА	80,8%
PAU	3,8%
Type B Dissection	15,4%
Procedure completed	100%
Freedom from endoleak	92,3%
Perioperative overall death	11,5%
Perioperative procedure related death	3.8%



"Large single window for ease of cannulation of 2 internal tunnel(s)

Cook TX2 Arch Graft (2-3 branch): Internal Branch

Courtesy of Cherrie Abraham, MD

Table 3. Comparative analysis (median [Q1-Q3] or n [%]).

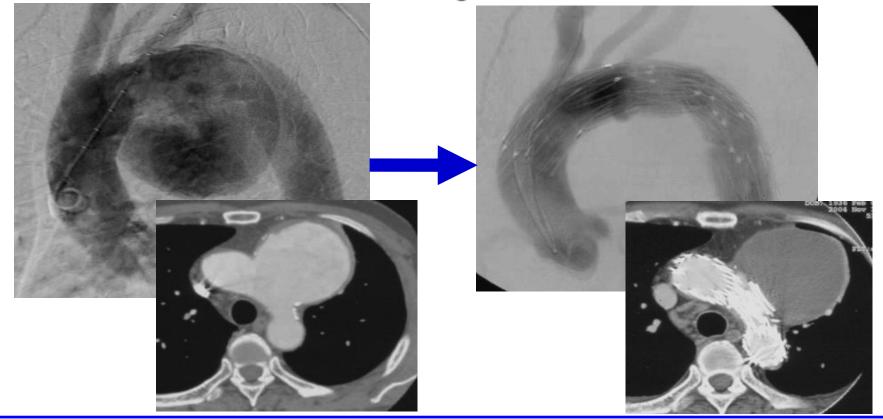
	Group 1 (<i>n</i> = 38)	Group 2 (<i>n</i> = 27)	p		
Procedure					
Length (min)	250 (210-330)	295 (232-360)	.35		
X-ray time (min)	46 (32—84)	39.3 (34—61)	.07		
Volume of contrast	150 (95–207)	183 (120—290)	.03		
(mL)					
Early post-operative					
Endoleaks	11 (28.9%)	3 (11.1%)	.08		
Secondary procedures	4 (10.5%)	4 (14 8%)	61		
Cerebrovascular	6 (15.8%)	3 (11.1%)	.60		
events					
Systemic	17 (44.7%)	13 (43.3%)	.79		
complications					
Mortality	5 (13.2%)	0 (0%)	.05		
Follow up ($n = 33$)					
Endoleaks	3 (9.1%)	2 (7.4%)	.82		
Secondary procedures	3 (9.1%)	2 (7.4%)	.82		
Mortality	4 (12 1%)	1 (3 7%)	24		
Overall mortality	9 (23.6%)	1 (3.7%)	.02		
Group 1: early experience study.					

Group 1: early experience study.

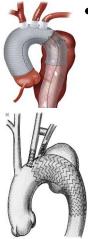
Group 2: current study.

Spear, R., et al. (2016). Editor's Choice - Subsequent Results for Arch Aneurysm Repair with Inner Branched Endografts. EJVES, 51(3), 380–385

Additional Method for Aortic Arch Aneurysm


Device 1 : @ 30mm

YoshihikoYokoi M.D.


Department of Vascular Surgery, Tokyo Medical University

TEVAR for Aortic Arch Aneurysm

with Fenestrated Endograft

Current treatment outcomes for Complex aortic arch

- Open surgical repair
 - Longer hospital stays
 - Younger, healthier patients

Endovascular Repair (parallel, branched, and fenestrated)

• High risk for open repair

Hybrid Repair

- High risk for open repair
- Not intended use of devices

- Perioperative mortality
 - Open = 8.6% (Leshnower, 2011)
 - Endovascular= 4-15% (Moulakakis, 2013)
 - Hybrid = 10.8% (Cao, 2012)
- Stroke/neurological events
 - Open = 8.2% (Hiraoka, 2014)
 - Endovascular= 8-15% (Moulakakis, Cook)
 - Hybrid = 6.8% (Cao, 2012)
- Reinterventions
 - Open = 9% (Sundt III, 2008)
 - Endovascular= 30.8% (Mangialardi, 2014)

Conclusions

- Branched graft solutions for Zone 0-2 Arch pathology are rapidly evolving
- Rigorously controlled studies must be done to appropriately study these procedures, particularly related to stroke
- Strong Collaboration between multidisciplinary teams is needed for optimal results:
 - Imaging, CT surgery, Vascular Surgery, Interventional Cardiology, Neurology, Anesthesia, Critical care

