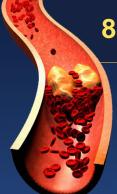
Percutaneous Bypass: Update on the DETOUR and DETOUR II Trials

Ehrin Armstrong, MD
Rocky Mountain VA,
Aurora, CO

Disclosure Statement of Financial Interest

I, Ehrin Armstrong, DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.



The Inconvenient Truth About Femoropopliteal Revascularization

Despite numerous devices with "long lesion" indications, long, complex SFA lesions do not have an optimal endovascular treatment strategy

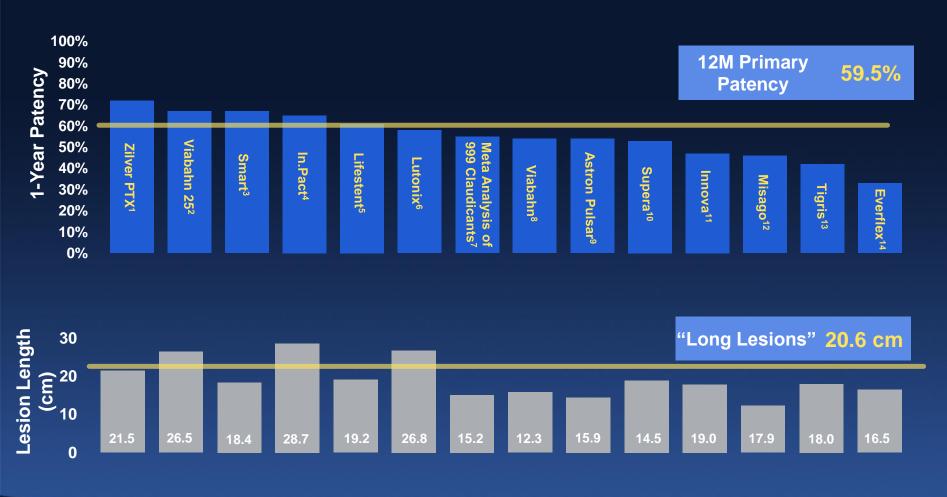
Simple Lesions

80% patency at 12M

Endovascular = usually first choice for shorter or less complex lesions

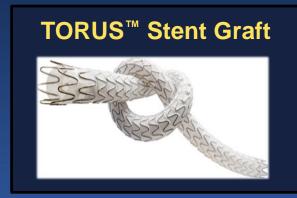
Long, Complex Lesions

<60% patency at 12M*



Endovascular = consistently less durable than open bypass though 12 months

SFA Devices Consistently Demonstrate an Inverse Relationship Between Lesion Length and Durability

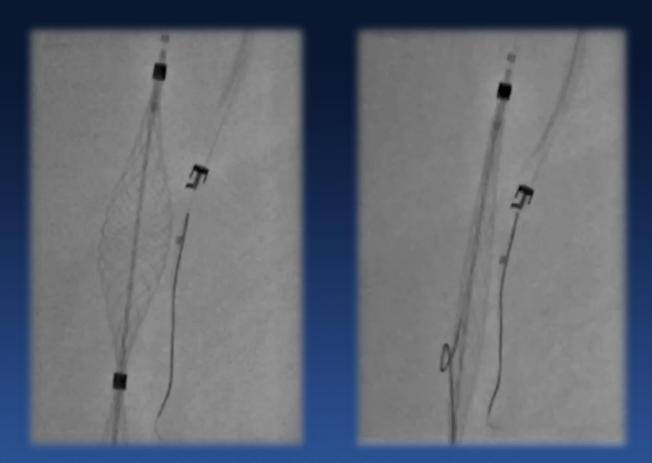


Percutaneous femoropopliteal bypass

Surgical principles using an endovascular approach

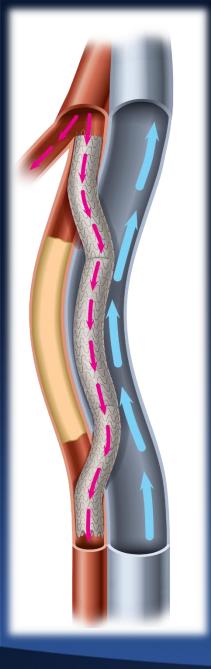
Originates in SFA, travels within the femoral vein, and returns to the popliteal artery

Femoral vein becomes pathway for stent graft bypass



Step 1: Proximal Anastomosis

Specialized crossing device and snare create arteriovenous connection above proximal margin of the lesion

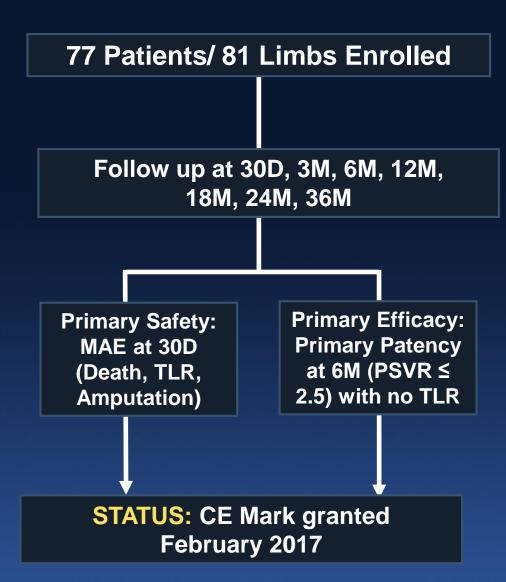

Step 2: Distal Anastomosis

Specialized crossing device and snare create arteriovenous connection below distal margin of the lesion

Step 3: Graft Deployment

Stent graft bypass exits artery, travels within femoral vein, adjacent to occlusion and reenters artery at the site of reconstitution

PQ Bypass Clinical Program


	Proof of Concept	CE Mark (DETOUR I)	US Pivotal (DETOUR II)
# Subjects	23	81	292
# Centers	1	8	40
Study Design	IRB-approved, observational	Prospective, single-arm	Prospective, single- arm safety and efficacy
Follow Up	10 Years	3 Years	3 Years
Enrollment	LPI	LPI Jul '17	Ongoing

DETOUR I

- DESIGN: Prospective, single-arm, multi-center clinical evaluation of the DETOURTM System and Procedure for Percutaneous Bypass
- INCLUSION CRITERIA: De novo, CTO, or ISR femoropopliteal Lesion ≥10 cm; femoral vein diameter ≥10mm or duplicate
- Independent Review: Core Lab (DUS, CT, Angio) by Cleveland Clinic; Clinical Events Committee by Syntactx

Baseline Characteristics

Clinical Characteristics	N=77 Patients	
Male Gender	83.1% (64/77)	
Age, Years	64.1±7.2	
Diabetes Mellitus	24.7% (19/77)	
Hypertension	83.1% (64/77)	
Hypercholesterolemia	39.0% (30/77)	
History of CAD or MI	42.9% (33/77)	
History of Smoking	87.0% (67/77)	
Previous Peripheral Intervention	29.9% (23/77)	
ABI	0.64 ± 0.17	
Rutherford 3	92.2% (71/77)	
Rutherford 4-5	7.8% (6/77)	

Lesion Characteristics	N=81 lesions/ 77 patients	
Lesion Length	37.1 cm ± 5.5 cm	
Range	22.2 cm – 47.2 cm	
% CTO	96% (78/81)	
Calcification		
Severe	67.5% (54/80)	
Moderate	13.8% (11/80)	
Mild	18.8% (15/80)	
TASC II Lesion Type		
C	56% (45/81)	
D	44% (36/81)	
Vessel Run-off		
1	8% (6/77)	
2	29% (22/77)	
3	64% (49/77)	

DETOUR I Lesion Distribution by Length

Independently adjudicated by Cleveland Clinic Core Laboratory

DETOUR I: Efficacy and Safety Through 12 Months

Independently adjudicated by Cleveland Clinic Core Laboratory and Syntactx CEC

Efficacy Through 12 **Months**

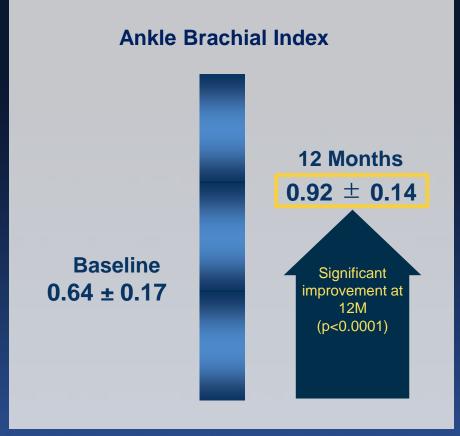
PSVR < 2.5 without TLR

Primary Asst. Patency Revasc of 50%-99% stenoses

Secondary Patency Revasc of 100% occlusion

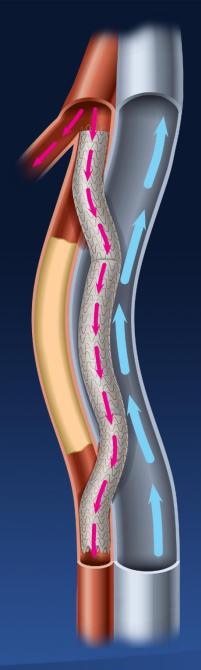
Safety Through 12 **Months**


N=77 Patients/81 Lesions	30D	12M
Freedom from DVT	100% (81/81)	97.5% (78/80)
Freedom From Death	100% (77/77)	98.7% (76/77)
Freedom from Amputation	100% (81/81)	100% (80/80)
Freedom from ALI	98.8% (80/81)	98.8% (79/80)
Freedom from TLR	97.6% (79/81)	78.8% (63/80)



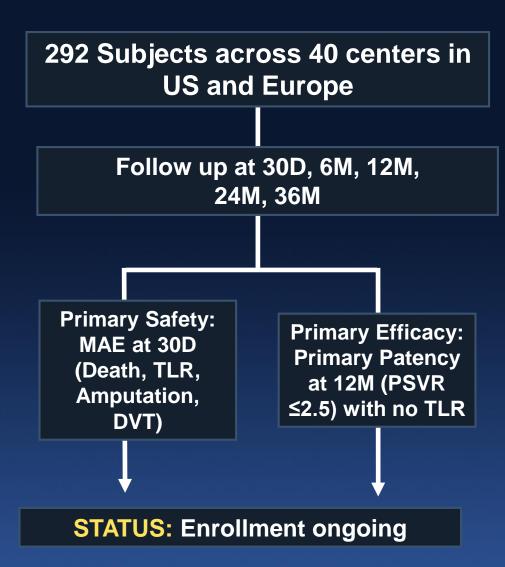
Functional Improvement Through 12 Months

90% of patients experienced Rutherford improvement ≥ 2 classes



DETOUR II

Trial Update



DETOUR II

- DESIGN: Prospective, single-arm, multi-center clinical evaluation of the DETOUR[™] System and Procedure for Percutaneous Bypass
- INCLUSION CRITERIA: De novo, CTO, or ISR femoropopliteal Lesion ≥15 cm; femoral vein diameter ≥10mm or duplicate
- Independent Review: Core Lab (DUS, CT, Angio) by Cleveland Clinic; Clinical Events Committee by Syntactx

Case Review: Rocky Mountain VA

- 72 year-old male
- 35 cm TASC D
 lesion
- Rutherford 3
- History of smoking
- BMI of 30

Case Review: Pre Procedural Imaging

SFA Popliteal Venogram

Case Review: Proximal Crossing

Alignment of Crossing Device Marker Band in SFA; Snare Expanded in FV

Crossing Device Needle from Artery into Vein – Wire Advanced into Snare

Case Review: Distal Crossing

Crossing Device Docked with Snare in Vein; Needle firing in orthogonal view

Wire advancement into popliteal artery

Case Review: Pre and Post Angiogram

Pre **Post**

Case Review: Pre and Post Venogram

Pre

Post

Conclusions

- □ Safety outcomes from DETOUR I demonstrate percutaneous bypass has a promising safety profile with 100% freedom from amputation, 98.8% freedom from acute limb ischemia and 98.7% freedom from death at 12 months
- Excellent durability in long, challenging, occlusive lesions (Cleveland Clinic Core Lab Adjudicated Patency)
- □ 72.5% Primary Patency, 78% Primary Assisted Patency, 93.8% Secondary Patency
- 12-Month safety and durability outcomes in DETOUR I demonstrate fullypercutaneous bypass is a promising endovascular alternative for complex femoropopliteal disease

DETOUR II IDE designed to build upon extant body of clinical evidence in even longer, more challenging lesions

