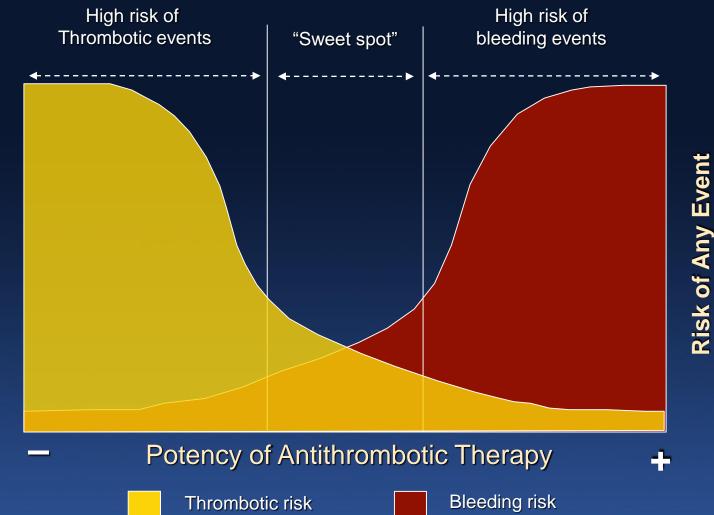
Pharmacologic Agents to Prevent Stroke in Non-Valvular Atrial Fibrillation and PFO

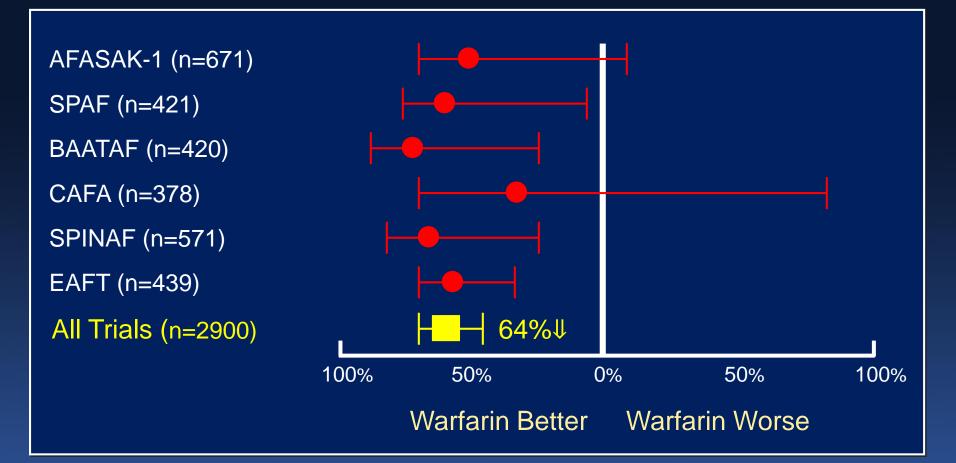
Gregg W. Stone, MD Columbia University Medical Center The Cardiovascular Research Foundation


Disclosures

None

Anticoagulation: Balancing Risks

Adapted from: Ferreiro JL et al. Thromb Haemost. 2010;103:1-8



Non-valvular atrial fibrillation Warfarin vs. Antiplatelet Rx

Stroke Prevention in NVAF 6 Randomized Trials of Warfarin vs. Placebo

Hart RG et al. Ann Intern Med. 2007;146:857-867

Meta-analysis of antiplatelet agents and warfarin in NVAF: Stroke

29 RCTs with 28,044 pts, including:

Warfarin vs placebo or no treatment: 6 RCTs, 2,900 pts Antiplatelet agents vs placebo or no treatment : 8 RCTs, 4,876 pts Warfarin vs antiplatelet agents: 12 RCTs, 12,963 pts

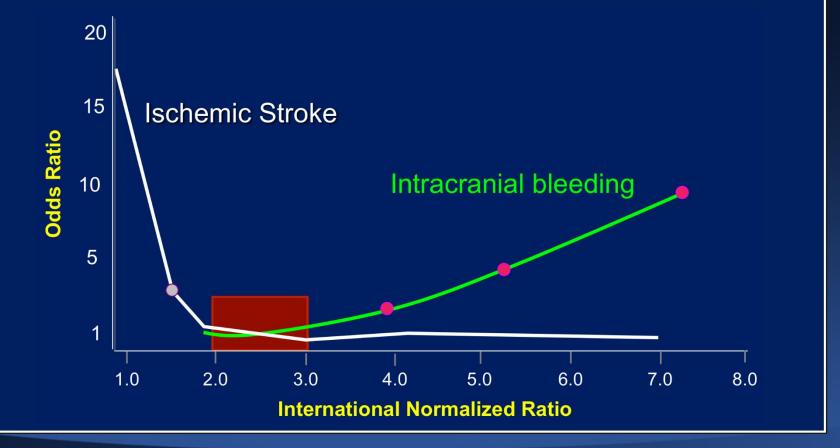
Comparison	All-cause stroke					
A vs B	A) rate/yr	B) rate/yr	RRR (95%CI)	Absolute ↓/yr		
Warfarin vs. placebo or no treatment	2.2%	6.0%	64% (49 to 74)	1° prev: 2.7 2° prev: 8.4		
Aspirin vs. placebo	6.9%	8.8%	22% (2 to 39)	1° prev: 1.9 2° prev: 2.5		
Aspirin vs. no treatment	5.2%	6.3%	19% (-1 to 35)	1° prev: 0.8 2° prev: 2.5		
Warfarin vs. antiplatelet agents	2.1%	3.5%	39% (22 to 52)	1° prev: 0.9 2° prev: -		

Hart RG et al. Ann Intern Med. 2007;146:857-867

Meta-analysis of antiplatelet agents and warfarin in NVAF: Mortality

29 RCTs with 28,044 pts, including:

Warfarin vs placebo or no treatment: 6 RCTs, 2,900 pts Antiplatelet agents vs placebo or no treatment : 8 RCTs, 4,876 pts Warfarin vs antiplatelet agents: 12 RCTs, 12,963 pts


Comparison	Mortality				
A vs B	A) # deaths	B) # deaths	RRR (95%CI)	Absolute ↓/yr	
Warfarin vs. placebo or no treatment (6 trials, 2900 pts)	110	143	26% (3 to 43)	1.6%	
Aspirin vs. placebo (5 trials, 3762 pts)	184	204	14% (-7 to 31)	0.5%	
Warfarin vs. aspirin (8 trials, 3647 pts)	117	128	9% (-19 to 30)	0.5%	

Hart RG et al. Ann Intern Med. 2007;146:857-867

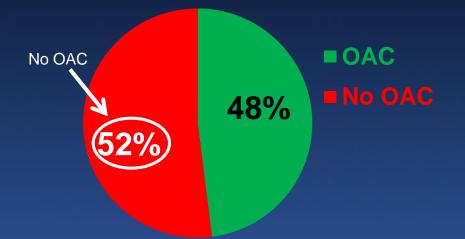
Limitations of Warfarin

 Lowest risk of stroke and bleeding is achieved by maximizing the time in the optimum therapeutic range (TTR), with an INR of 2.0 – 3.0

Fang MC et al. Ann Intern Med 2004;141:745 Hylek EM et al. N Engl J Med 1996;335:540

Limitations of Warfarin

- 1. Lowest risk of stroke and bleeding is achieved by maximizing the time in the optimum therapeutic range (TTR), with an INR of 2.0 3.0
 - There are large variations in TTR between individuals, sites, and countries, which affects patient outcomes
- 2. Genetic variability in metabolism (VKORC1 and CYP2C9)
- 3. Multiple interactions with foods and drugs
 - \rightarrow Requires regular lab-guided dose adjustments
- 4. Delayed onset and offset
- 5. Rates of bleeding and discontinuation are high



"Shocking Level" of OAC Undertreatment in AF Patients at High Risk for Stroke US PINNACLE Registry (N=429,417 outpts with AF*)

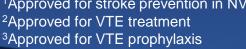
*Treated by cardiovascular specialists

Most AF patients at high risk of stroke do <u>not</u> receive OAC therapy!

"HCPs may be more reluctant to prescribe anticoagulation in sicker patients due to concerns regarding bleeding risk."

 >2000 strokes/year could have been prevented if OAC therapy was used

Hsu JC et al. JAMA Cardiol. 2016 Mar 16. [Epub ahead of print]


Non-valvular atrial fibrillation NOACs vs. Warfarin

New Agents for Atrial Fibrillation Oral direct inhibitors

ardiovascular

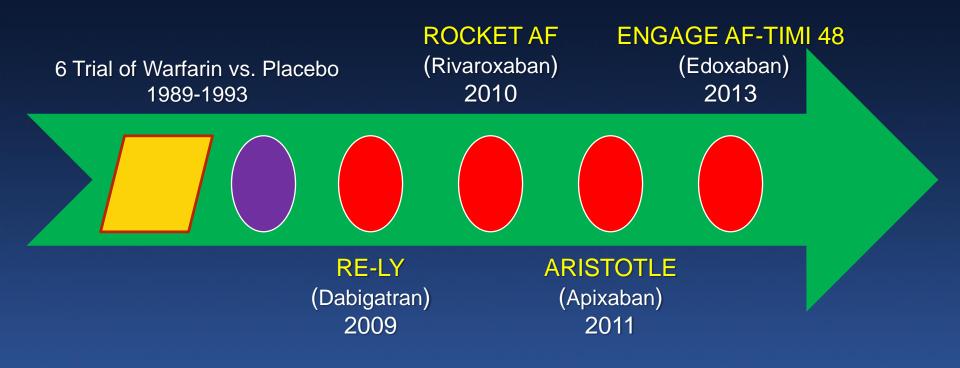
esearch Foundation

Adapted from: Weitz JI. J Thromb Haemost. 2005;3:1843

Characteristics of New Oral Anticoagulants

Drug	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Mechanism	Thrombin inhibitor	Factor Xa inhibitor	Factor Xa inhibitor	Factor Xa inhibitor
T _{1/2}	12-17 hrs	5-9 hrs (young) 11-13 hrs (old)	9-14 hrs	10-14 hrs
Regimen	BID	QD, BID	BID	QD
Peak to trough	2	12 (QD)	3-5	~3
Renal excretion	80%	35%	27%	50%
Potential for drug interactions	P-GP inhibitor	P-GP inhibitor and CYP3A4 substrate	P-GP inhibitor and CYP3A4 substrate	P-GP inhibitor; min CYP3A4 substrate

P-GP = P-glycoprotein (interactions with digoxin, verapamil, diltiazem, quinidine, amiodarone, dronedarone, atorvastatin, erythromycin, etc.)



Usman MH et al.: Curr Treat CV Med. 2008;10:388-397 Piccini JP et al. Curr Opin Cardiol. 2010;25(4):312-320

Pivotal Warfarin and NOAC Trials of Stroke Prevention in NVAF

Warfarin vs. Placebo 2,900 patients NOACs vs. Warfarin 71,683 patients

New Oral Anticoagulants Phase III AF Trials

	RE-LY (n=18,113)	ROCKET-AF (n=14,264)	ARISTOTLE (n=18,201)	ENGAGE AF- TIMI 48 (n=21,105)
Drug	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Dose (mg)	150, 110	20 (15*)	5 (2.5*)	60, 30 (30*, 15*)
Frequency	BID	QD	BID	QD
Ν	18,113	14,266	18,206	21,105
Design	Open-label [†]	Double-blind	Double-blind	Double-blind
AF criteria	AF x 1 <6 mos	AF x 2 (<u>></u> 1 in <30d)	AF or AFI x 2 <12 mos	AF x 1 <12 mos
VKA naive	50%	38%	43%	41%
Follow-up (yrs)	2.0	1.9	1.8	2.8

*In pts with Jdrug clearance; †dabi dose concealed, but no sham INR monitoring

COLUMBIA UNIVERSITY MEDICAL CENTER

New Oral Anticoagulants Phase III AF Trials

	Re-LY	ROCKET-AF	ARISTOTLE	ENGAGE AF
	(dabigatran)	(rivaroxaban)	(apixaban)	(edoxaban)
Age, yrs	71.5 mean	73 median	70 median	72 median
Female	37%	40%	35%	38%
Hypertension	79%	91%	87%	94%
Diabetes	23%	40%	25%	36%
Heart failure	32%	62%	35%	57%
Prior stroke/TIA	20%	55%	20%	28%
CHADS ₂ mean	2.2	3.5	2.1	2.8
- 0-1	32%	-	34%	<1%
- 2	35%	13%	36%	77%
- ≥3	33%	87%	30%	23%
TTR, median	66%	58%	66%	68%

NOAC vs. Warfarin Meta-analysis 71,683 randomized pts with nonvalvular AF in 4 phase 3 trials: RE-LY, ROCKET-AF, ARISTOTLE, ENGAGE AF-TIMI 48

Primary efficacy: Stroke or systemic embolization

	NOAC (events)	Warfarin (events)		RR (95% CI)	Р
RE-LY	134/6076	199/6022 🔶		0.66 (0.53-0.82)	0.0001
ROCKET-AF [†]	269/7081	306/7090	╴┊╏╌┼	0.88 (0.75-1.03)	0.12
ARISTOTLE [‡]	212/9120	265/9081		0.80 (0.67-0.95)	0.012
ENGAGE AF-TIMI 48	296/7035	337/7036		0.88 (0.75-1.02)	0.10
Combined (random)	911/29312 (3.1% vs.	1107/29229 3.8%)		0.81 (0.73-0.91)	<0.0001
		0.5	Favors NOAC	Favors warfarin	.0

Heterogeneity: I²=47%; p=0.13

Dabigatran 150 mg bid. †Rivaroxaban 20 mg qd. ‡Apixaban 5 mg bid. §Edoxaban 60 mg qd.

Ruff CT et al. Lancet 2014;383:955-62

NOAC vs. Warfarin Meta-analysis 71,683 randomized pts with nonvalvular AF in 4 phase 3 trials: RE-LY, ROCKET-AF, ARISTOTLE, ENGAGE AF-TIMI 48

Primary safety: Major bleeding

	NOAC (events)	Warfarin (events)		RR (95% CI)	Р
RE-LY	375/6076	397/6022		0.94 (0.82-1.07)	0.34
ROCKET-AF [†]	395/7111	386/7125		→ 1.03 (0.90-1.18)	0.72
ARISTOTLE [‡]	327/9088	462/9052		0.71 (0.61-0.81)	<0.0001
ENGAGE AF-TIMI 48	444/7012	557/7012		0.80 (0.71-0.90)	0.0002
Combined (random)	1541/29287 (5.3% vs.	1802/29211 6.2%)		0.86 (0.73-1.00)	0.06
		0.5	Favors NOAC	Favors warfarin	2.0

Heterogeneity: I²=83%; p=0.001.

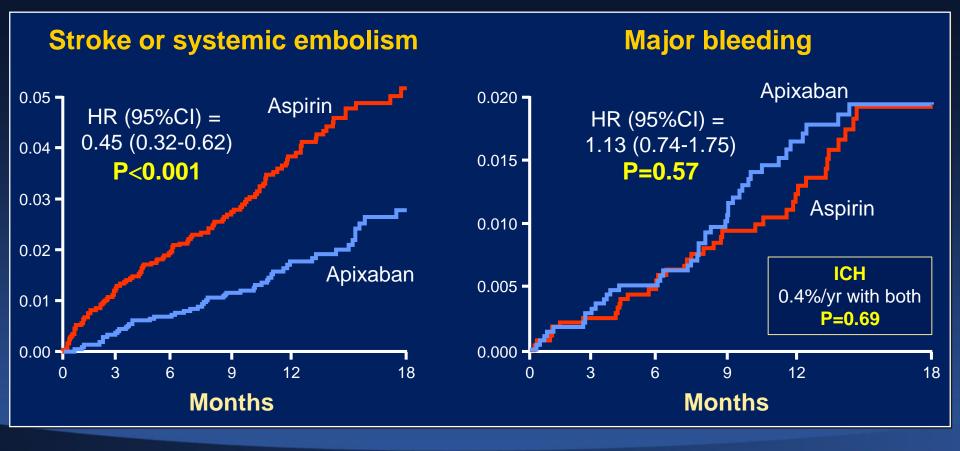
*Dabigatran 150 mg bid. †Rivaroxaban 20 mg qd. ‡Apixaban 5 mg bid. §Edoxaban 60 mg qd.

Ruff CT et al. Lancet 2014;383:955-62

NOAC vs. Warfarin Meta-analysis 71,683 randomized pts with nonvalvular AF in 4 phase 3 trials: RE-LY, ROCKET-AF, ARISTOTLE, ENGAGE AF-TIMI 48

Secondary efficacy and safety outcomes

Heterogeneity: ischemic stroke I²=32%, p=0.22; hemorrhagic stroke I²=34%, p=0.21; MI I²=48%, p=0.13; all-cause mortality I²=0%, p=0.81; ICH I²=32%, p=0.22; GIB I²=74%, p=0.009.



Ruff CT et al. Lancet 2014;383:955-62

AVERROES: Apixaban vs Aspirin in 5,599 Pts with Nonvalvular AF and ≥1 Additional Risk Factor for Stroke Unsuitable for Warfarin by Physician or Pt Preference

Apixaban dose was 5 mg bid in 94% of pts; 2.5 mg bid was used in pts with ≥2 of the following criteria: age ≥80 yrs, weight ≤60 kg, or s.cr. ≥1.5 mg/dL

Connelly SJ et al. N Engl J Med 2011;364:806-17

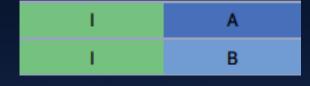
COLUMBIA UNIVERSITY

- NewYork-Presbyterian

Current (2014) ACC/AHA/HRS Guidelines for Anticoagulation

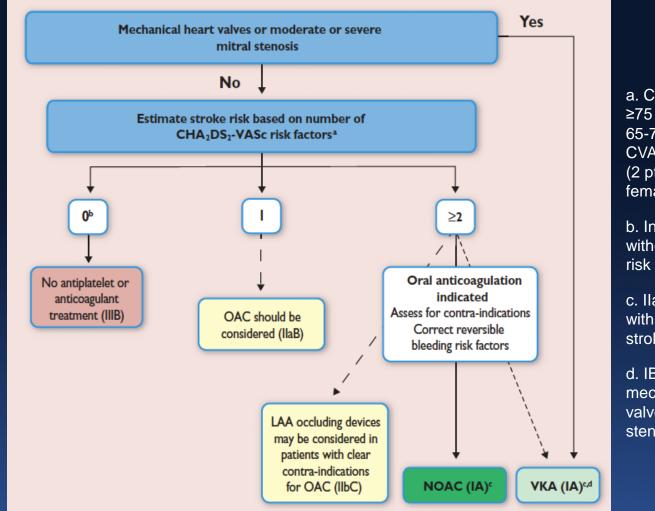
Oral anticoagulants are recommended with in pts with prior stroke, TIA, or CHA2DS2-VASc score ≥2. Options include:

Warfarin Dabigatran, rivaroxaban or apixiban


Direct thrombin or factor Xa inhibitor is recommended if unable to maintain therapeutic INR

Warfarin is recommended for mechanical heart valves, with target INR intensity based on type and location of prosthesis

Dabigatran should not be used with a mechanical heart valve


ſ

Current (2016) ESC Guidelines for OAC

a. CHF, HTN, age ≥75 yrs (2 pts), age 65-74 yrs, DM, prior CVA/TIA/embolus (2 pts), vascular ds., female

b. Includes women
 without other stroke
 risk factors

c. IIaB for women with only 1 additional stroke risk factor

d. IB for pts with mechanical heart valves or mitral stenosis

When oral anticoagulation is initiated in a patient with AF who is eligible for a NOAC (apixaban, dabigatran, edoxaban, or rivaroxaban), a NOAC is recommended in preference to a vitamin K antagonist.

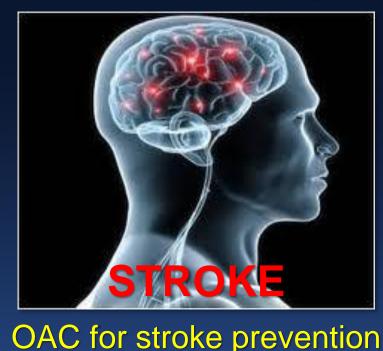
ardiovascular

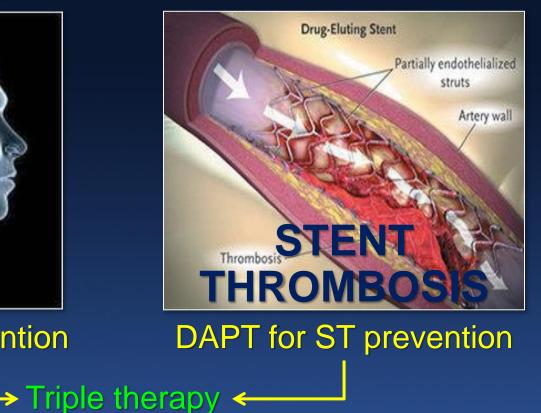
Research Foundation

Columbia University Medical Center

Α

European Heart Journal 2016;37:2893–2962


Atrial fibrillation + PCI or ACS Dual vs. Triple Therapy



The Clinical Challenge of Patients with NVAF Undergoing PCI (or w/ACS)

10-15% of pts undergoing PCI (or with ACS) have NVAF

Cardiovascular Research Foundation

Connolly S et al. Lancet. 2006;367:1903-12

Meta-analysis of TAPT vs. DAPT after PCI in pts indicated for OAC 5,317 pts in 4 RCTs with mean FU 9-14 months

WOEST (W/A/C vs. W/C), ISAR-TRIPLE (W/A/Cx6mo vs. W/A/Cx6wk), PIONEER AF-PCI (W/A/C vs. R 15/C), RE-DUAL PCI (W/A/C vs. Dabi 110 or 150/C)

TIMI major/minor bleeding								
Study	Hazard Ratio (95% Crl)		DAT Arm	TAT Arm				
WOEST	0.40 (0.27, 0.59) 🗕 🗕		39/279	89/284				
ISAR TRIPLE (landmark analysis)	0.95 (0.46, 1.97) —		14/307	15/307				
PIONEER-AF-PCI	0.64 (0.38, 1.09)	-	21/696	33/697				
RE-DUAL PCI (total)	0.47 (0.33, 0.67) -		56/1744	69/981				
Overall	0.53 (0.36, 0.85)	>	130/3026	206/2269				
l ² =42.9%, <i>P</i> _{het} =0.1			4.3% v	s. 9.0%				
0 0.5 1 1.5 2 DAT better TAT better								

Golwala HB et al. EHJ 2018;39:1726-35

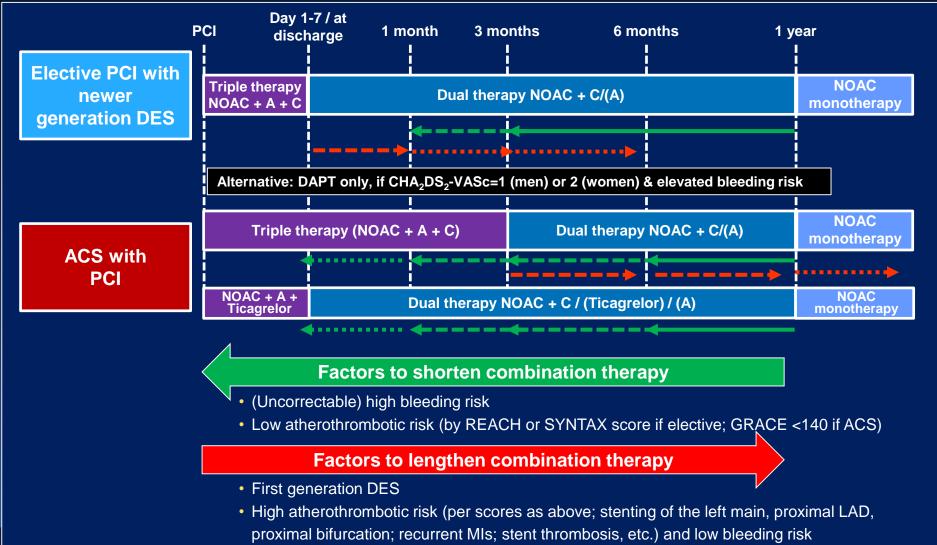
ardiovascular

esearch Foundation

Meta-analysis of TAPT vs. DAPT after PCI in pts indicated for OAC 5,317 pts in 4 RCTs with mean FU 9-14 months

WOEST (W/A/C vs. W/C), ISAR-TRIPLE (W/A/Cx6mo vs. W/A/Cx6wk), PIONEER AF-PCI (W/A/C vs. R 15/C), RE-DUAL PCI (W/A/C vs. Dabi 110 or 150/C)

MACE (trial-defined)							
Study	Hazard Ratio (95% Crl)		DAT Arm	TAT Arm			
WOEST	0.60 (0.38, 0.94)		31/279	50/284			
ISAR TRIPLE (landmark analysis)	0.40 (0.13, 1.24) 🛶		4/307	10/307			
PIONEER-AF-PCI	1.08 (0.69, 1.69)	_	41/694	36/695			
RE-DUAL PCI (total)	1.04 (0.84, 1.29)	-	239/1744	131/981			
Overall	0.85 (0.48, 1.29)		315/3024	227/2267			
I ² =52.4%, <i>P</i> _{het} =0.06			_ 10.4% v	s. 10.0%			
		0.6 1 1.4 1.8					
DAT better TAT better							


Golwala HB et al. EHJ 2018;39:1726-35

ardiovasculai

esearch Foundation

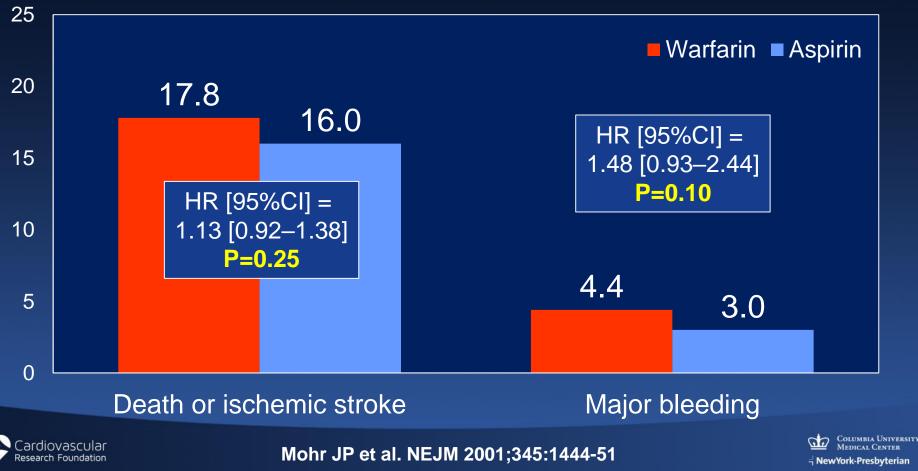
Antiplatelet and OAC Considerations after PCI in SIHD and ACS

Steffel J et al. EHJ 2018;39:1330-93

Columbia University Medical Center

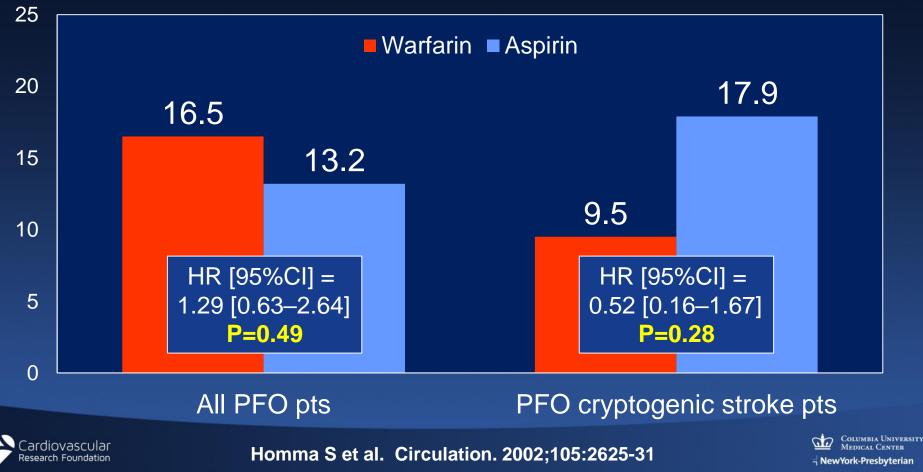
Pharmacologic Therapy to Prevent Recurrent Cryptogenic Stroke with PFO

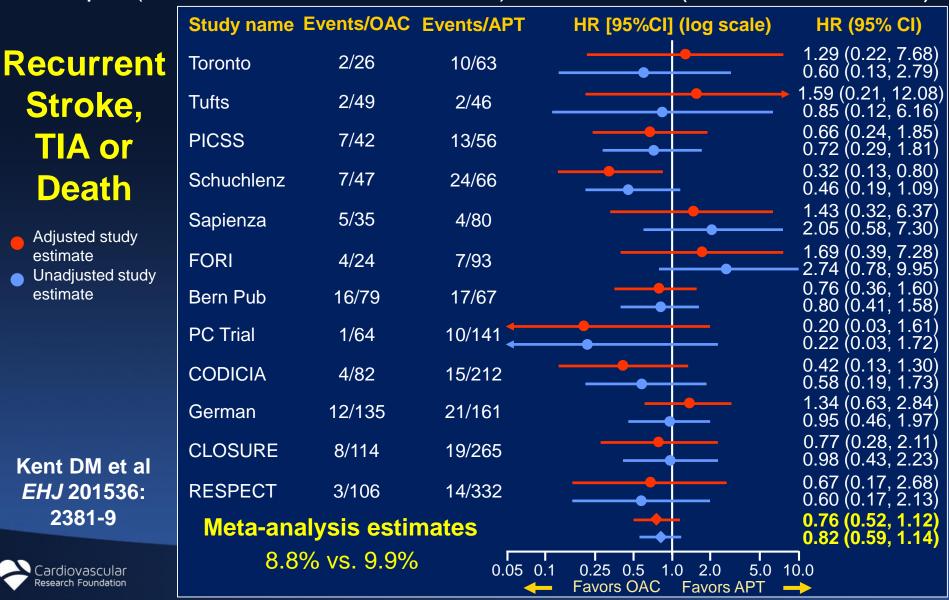
Chronic Oral Anticoagulation vs. Antiplatelet Therapy



OAC vs. APT for Recurrent Stroke WARRS

Warfarin (mean INR 2.1) vs. ASA 325 mg qd N=2206; Mean FU 2 years


Two-year event rates (%)

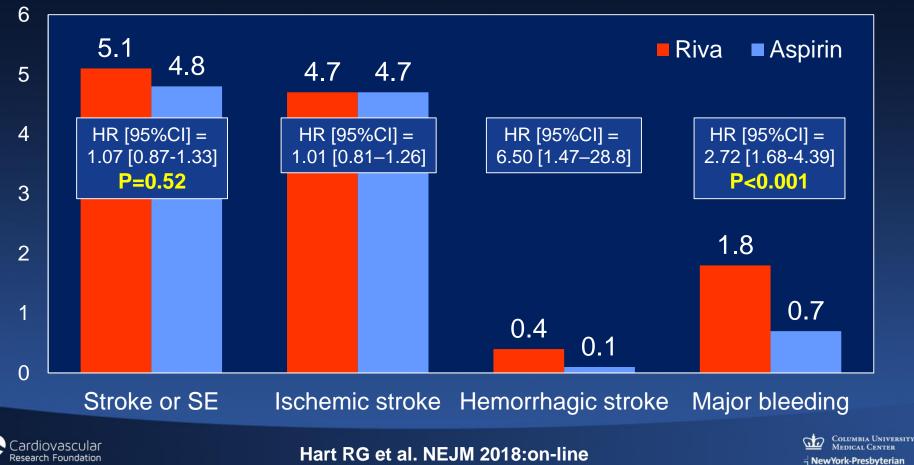

OAC vs. APT for Recurrent Stroke PICSS (WARRS substudy)

Warfarin (mean INR 2.1) vs. ASA 325 mg qd; N=203/630 pts (33.8%) who underwent TEE had PFO; 98 pts had cryptogenic stroke

Two-year death or ischemic stroke (%)

OAC vs. APT Rx in cryptogenic stroke with PFO: TAcTiCS Individual pt data meta-analysis of 12 studies 2,385 pts (804 warfarin and 1581 APT), 227 events (stroke/TIA/death)

OAC vs. APT Rx in cryptogenic stroke with PFO: TAcTiCS Individual pt data meta-analysis of 12 studies 2,385 pts (804 warfarin and 1581 APT), 227 events (stroke/TIA/death) Subgroups


Recurrent					
	Variable	Stratum		HR (95% CI)	P interaction
Stroke, TIA or	ROPE score	e Low High		0.83 (0.51, 1.35) 0.82 (0.34, 1.97)	0.98
Death	Age	≤45 >45		- 1.14 (0.47, 2.74) 0.72 (0.47, 1.11)	0.31
 Adjusted study estimate Unadjusted study estimate 	Sex	Female Male		0.98 (0.54, 1.78) 0.57 (0.33, 0.97)	0.15
	RAD SUP	Not superficial superficial -	_	0.88 (0.53, 1.44) 0.45 (0.22, 0.89)	0.98
	TEE ASA	No ASA ASA		0.71 (0.44, 1.15) 0.59 (0.31, 1.12)	0.10
Kent DM et al <i>EHJ</i> 201536: 2381-9	TEE size	Not large Large		0.65 (0.30, 1.41) 0.60 (0.29, 1.24)	0.87
Cardiovascular Research Foundation		0.2	0.5 0 2 HR (Logarithmic scale)	1 5	

OAC vs. APT for Cryptogenic Stroke NAVIGATE ESUS

Rivaroxaban 15 mg qd vs. ASA 100 mg qd

N=7213; 534 (7.4%) with documented PFO; Median FU 11 mo

Annualized event rate (%)

Conclusions Warfarin and NOACs in NVAF and PFO

- Warfarin and NOACs are markedly effective at reducing ischemic stroke in NVAF, but increase major bleeding (including intracranial hemorrhage [ICH])
- Compared to warfarin, NOACs reduce major bleeding (especially ICH) and possibly mortality, do not require monitoring and have fewer drug/food interactions, but are more expensive
 - NOACs have emerged as the preferred first-line therapy for many pts with NVAF
- Pts with NVAF and PCI/ACS are a high-risk cohort
 - Standard of care (OAC + APT) in these pts is evolving
- There is no clear pharmacologic gold-standard for PFO