What is the appropriate evaluation of cryptogenic stroke, and when is a hypercoagulability work-up needed?

David E. Thaler, MD, PhD, FAHA

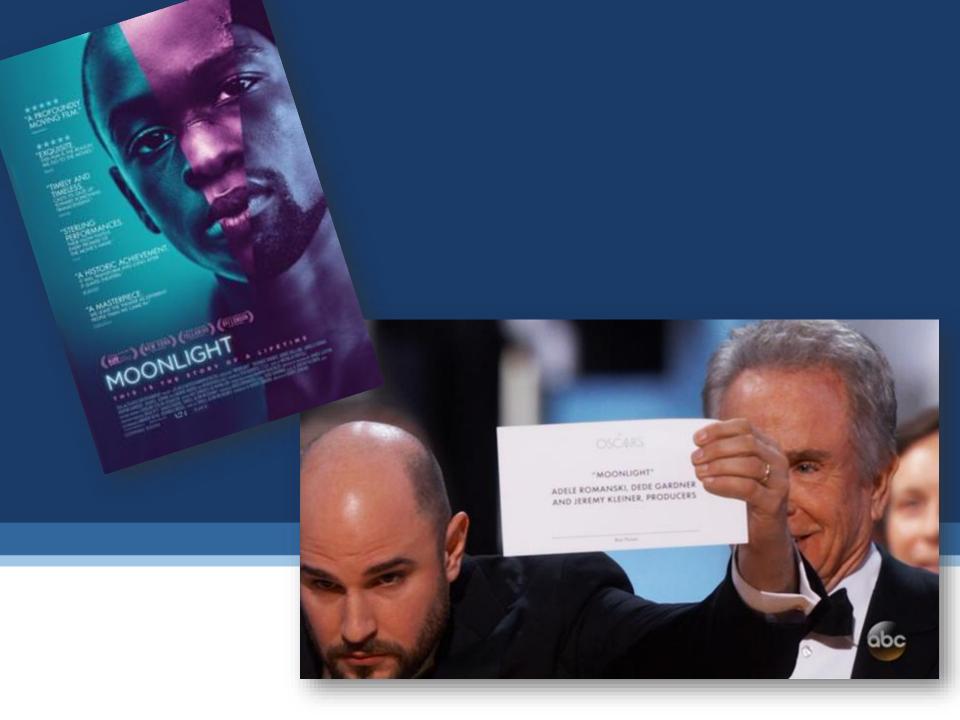
Neurologist in Chief, Tufts Medical Center Professor and Chair of Neurology, Tufts University School of Medicine Boston, MA

Disclosure Statement of Financial Interest

Within the past 12 months, I have had a financial affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other


Company

Steering Committee, RESPECT Trial, Abbott

All content provided by Dr David Thaler unless otherwise noted.

What is the appropriate evaluation of cryptogenic stroke, and when is a hypercoagulability work-up needed?

David E. Thaler, MD, PhD, FAHA

Neurologist in Chief, Tufts Medical Center Professor and Chair of Neurology, Tufts University School of Medicine Boston, MA

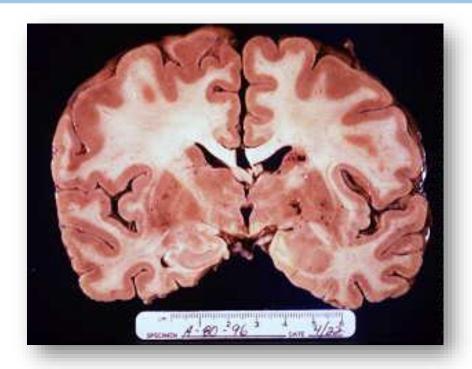
What is the appropriate evaluation of stroke, and when is a hypercoagulability work-up needed?

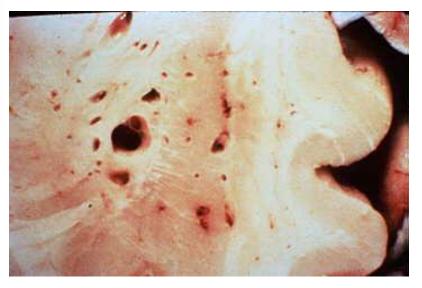
David E. Thaler, MD, PhD, FAHA

Neurologist in Chief, Tufts Medical Center Professor and Chair of Neurology, Tufts University School of Medicine Boston, MA

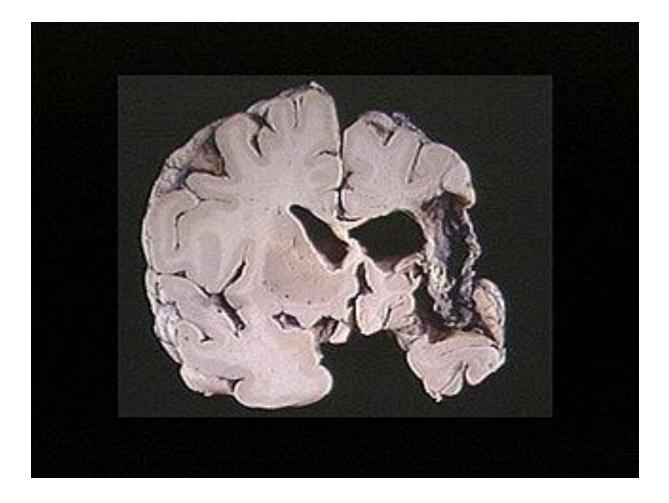
What is the underlying mechanism?

"Stroke is an observation not a diagnosis"




Common mechanisms of cerebral ischemia

- "Small vessel disease," lacune (lipohyalinosis)
- Embolism
 - Artery-to-artery (carotid, aorta, other)
 - Cardiac source
 - Paradoxical
- Decreased perfusion through a fixed stenosis


Lacunar stroke (0.2-15mm³)

Large, old stroke

Other causes of cerebral ischemia

Vasculitis

- **Collagen vascular diseases:** isolated angiitis of the CNS, temporal (giant cell) arteritis, polyarteritis nodosa, Wegener's granulomatosis, Takayasu's arteritis, syphilis
- Meningitis: tuberculosis, fungi, syphilis, bacteria, herpes zoster
- Arterial dissection: carotid, vertebral, basal intracranial arteries
- Hematologic disorders: polycythemia, thrombocytosis, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, dysproteinemias, hemoglobinopathies (sickle cell disease)
- **Miscellaneous**: cocaine, amphetamines, moyamoya disease, fibromuscular dysplasia, CADASIL
- Hypercoagulable states: secondary to systemic disease, carcinoma (especially pancreatic), eclampsia, oral contraceptives, lupus, factor C or S deficiency, factor V mutation, etc.
- Vasospasm: following subarachnoid hemorrhage
- Reversible cerebral vasoconstriction: idiopathic, migraine, eclampsia, trauma
- Venous: Dehydration, pericranial infection, postpartum and postoperative states, systemic cancer

CLINICAL PRACTICE

Caren G. Solomon, M.D., M.P.H., Editor

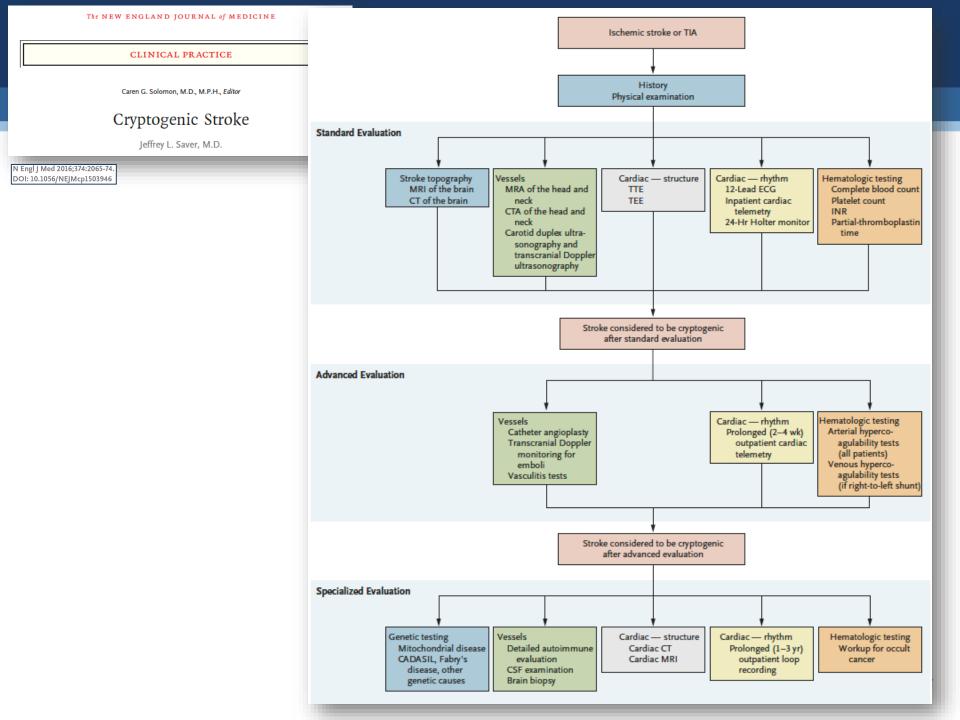
Cryptogenic Stroke

Jeffrey L. Saver, M.D.

N Engl J Med 2016;374:2065-74. DOI: 10.1056/NEJMcp1503946

CT 1	NTT	CAT	DD	ACT	ICE
		CAL	PKA	AUL	IUE

Caren G. Solomon, M.D., M.P.H., Editor


Cryptogenic Stroke

Jeffrey L. Saver, M.D.

N Engl J Med 2016;374:2065-74. DOI: 10.1056/NEJMcp1503946

Variable	Potential Clinical Implication		
Historical feature			
Neck trauma or manipulation	Carotid or vertebral artery dissection		
Migraine	Migrainous infarction or CADASIL		
Intravenous drug use	Endocarditis, HIV infection, vasculitides, paradoxical embol or vasospasm		
Dental procedure or systemic bacterial infection	Endocarditis, septic emboli, or coagulopathy		
Airplane travel or Valsalva maneuver at stroke onset	Paradoxical embolism		
Family history of early myocardial infarction or ischemic stroke	Genetic accelerated atherosclerosis		
Pregnancy and peripartum	Cerebral venous thrombosis or eclampsia		
Sickle-cell disease	Secondary moyamoya disease		
Physical finding			
Asymmetric arm pressures	Coarctation of aorta, aortic dissection, Takayasu's disease, or premature atherosclerosis		
Skin			
Needle tracks	Intravenous drug use or HIV infection		
Livedo reticularis	Sneddon's syndrome, antiphospholipid antibody syndrome or systemic lupus erythematosus		
Xanthoma or xanthelasma	Hyperlipidemia		
Adenopathy	HIV infection, sarcoid, or Tangier disease		
Heart murmur	Endocarditis, ventral septal defect, or myxoma		
Vessels			
Diminished pulses	Premature atherosclerosis, coarctation of aorta, aortic disse tion, or Takayasu's disease		
Bruit	Premature atherosclerosis, fibromuscular dysplasia, or arte dissection		
Venous thrombosis in the legs	Hypercoagulable state		

* CADASIL denotes cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and HIV human immunodeficiency virus.

ORIGINAL RESEARCH published: 21 August 2017 doi: 10.3389/fneur.2017.00421

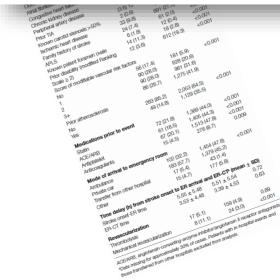
Characteristics and Outcomes of Young Patients with First-Ever Ischemic Stroke Compared to Older Patients: The National Acute Stroke ISraeli Registry

Miri Lutski^{1†}, Inbar Zucker^{1,2†}, Tamy Shohat^{1,2} and David Tanne^{2,3*}

¹ The Israel Center for Disease Control, Ministry of Health, Ramat Gan, Israel, ² Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel, ³ The Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel

	Age groups (years)		<i>p</i> Value
	≤50 N = 336	51–84 N = 3,243	
	n (%)	n (%)	
Demographic data Gender			
Male	211 (62.8)	1,833 (56.5)	0.03
Female	125 (37.2)	1,410 (43.5)	0.00
Population group		.,,	
Jews	232 (73.2)	2,605 (84.8)	<0.001
Arab	71 (22.4)	398 (13.0)	
Others	14 (4.4)	68 (2.2)	
Known risk factors and comorb	oidities		
Current smoking	159 (47.3)	702 (21.9)	<0.001
Hypertension	133 (39.7)	2,499 (77.3)	<0.001
Diabetes	76 (22.6)	1,410 (43.5)	<0.001
Dyslipidemia	161 (48.2)	2,007 (62.2)	<0.001
Obesity	73 (22.5)	644 (20.9)	0.5
Atrial fibrillation	9 (2.7)	548 (17.0)	<0.001
Congestive heart failure	12 (3.6)	391 (12.1)	<0.001
Chronic kidney disease	14 (4.2)	377 (11.7)	<0.001
Peripheral artery disease	7 (2.1)	191 (5.9)	0.004
Prior TIA	(3.6) 12	201 (6.3)	0.05
Known carotid stenosis >50%	2 (0.6)	79 (2.5)	0.03
Ischemic heart disease	33 (9.8)	891 (27.5)	<0.001
Family history of stroke	24 (7.4)	61 (2.0)	<0.001
APLS	6 (1.8)	12 (0.4)	<0.001
Known patent foramen ovale	14 (11.3)	18 (2.8)	<0.001
Prior disability (modified Ranking Scale ≥ 2)	12 (3.6)	612 (19.3)	<0.001
Score of modifiable vascular risk fa	ictors		
No	56 (17.4)	181 (5.9)	< 0.001
1	90 (28.0)	628 (20.6)	
2	90 (28.0)	961 (31.6)	
3+	86 (26.7)	1,275 (41.9)	
Prior atherosclerosis			
No	283 (85.2)	2,053 (64.5)	< 0.001
Yes	49 (14.8)	1,129 (35.5)	
Medications prior to event			
Statin	72 (21.8)	1,389 (44.0)	<0.001
ACE/ARB	61 (18.5)	1,405 (44.3)	< 0.001
Antiplatelet	67 (20.1)	1,513 (47.8)	< 0.001
Anticoagulants	15 (4.5)	276 (8.7)	0.009
Mode of arrival to emergency re			
Ambulance	102 (32.2)	1,454 (47.6)	<0.001
Private car	183 (57.7)	1,379 (45.2)	
Transfer from other hospital	17 (5.4)	43 (1.4)	
Other	15 (4.7)	177 (5.8)	
Time delay (h) from stroke onse Stroke opport ER time			
Stroke onset-ER time	5.55 ± 5.48	5.51 ± 5.54	0.72
ER-CT time	3.53 ± 4.48	3.39 ± 4.53	0.63
Revascularization			
Thrombolysis	17 (5.1)	159 (4.9)	0.89
Mechanical revascularization	8 (11.1)	24 (3.0)	<0.001

ACE/ARB, angiotensin-converting-enzyme inhibitor/angiotensin II receptor antagonists. "Data missing for approximately 30% of cases. Patients with in-hospital events and these tensengend fram these beneficies whether fram enables the processing of the processing


ORIGINAL RESEARCH

Characteristics and Outcomes of Young Patients with First-Ever Ischemic Stroke Compared to Older Patients: The National Acute Stroke ISraeli Registry

Miri Lutski^{1†}, Inbar Zucker^{1,2†}, Tamy Shohat^{1,2} and David Tanne^{2,3*}

¹ The Israel Center for Disease Control, Ministry of Health, Ramat Grant Control, Ministry of Health, Ramat Grant Control, School of Public Health, Sackler Faculty of Merice Collection Context, Sheba Medical Center, Tel-Hashomer, Context Center, Tel-Hashomer, Context Center, Sheba Medical Center, Tel-Hashomer, Context Center, Tel-Hashomer, Center, Sheba Medical Cen

TAULE 1 (Characteristics and resource Non groups beam 000 (2010) 450 000 (2010) 450 No 300 N = 3045 N = 304 N = 3045 N = 3045	<u>≤</u> 50y	51-84y	
Family history of stroke	24 (7.4)	61 (2.0)	<0.001
APLS	6 (1.8)	12 (0.4)	<0.001
Known patent foramen ovale	14 (11.3)	18 (2.8)	<0.001

Arterial hypercoagulable testing

- Lupus anticoagulant
- Anticardiolipin Ab
- Beta-2 glycoprotein
- Homocysteine

If venous infarction or R-L shunt identified

- Arterial hypercoagulable testing
 - Lupus anticoagulant
 - Anticardiolipin Ab
 - Beta-2 glycoprotein
 - Homocysteine

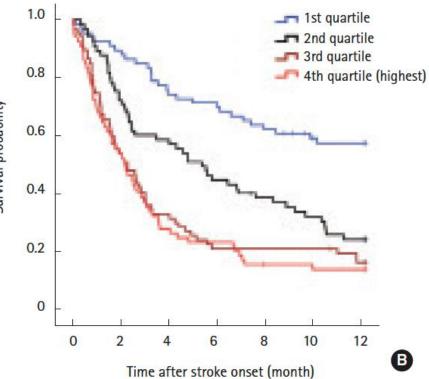
- Venous hypercoagulable testing
 - Protein C, protein S, anti-thrombin III (RARE!)
 - Prothrombin gene mutation
 - Factor V Leiden (activated protein C resistance)
 - Factor VIII

If venous infarction or R-L shunt identified

- Arterial hypercoagulable testing
 - Lupus anticoagulant
 - Anticardiolipin Ab
 - Beta-2 glycoprotein
 - Homocysteine
- Venous hypercoagulable testing
 - Protein C, protein S, anti-thrombin III (RARE!)
 - Prothrombin gene mutation
 - Factor V Leiden (activated protein C resistance)
 - Factor VIII

If unexplained BILATERAL embolic infarcts...

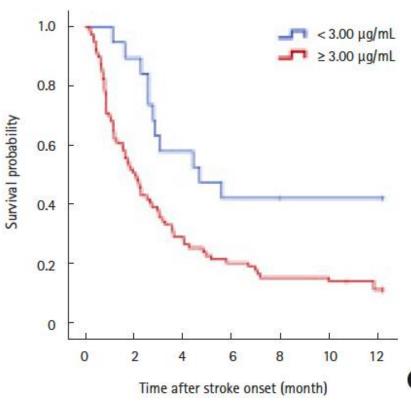
If venous infarction or R-L shunt identified


- Arterial hypercoagulable testing
 - Lupus anticoagulant
 - Anticardiolipin Ab
 - Beta-2 glycoprotein
 - Homocysteine
- Venous hypercoagulable testing
 - Protein C, protein S, anti-thrombin III (RARE!)
 - Prothrombin gene mutation
 - Factor V Leiden (activated protein C resistance)
 - Factor VIII

If unexplained BILATERAL embolic infarcts...

...cancer?

Stroke, cancer, d-dimer, and mortality


Baseline d-dimer and mortality

Hypercoagulability and Mortality of Patients with Stroke and Active Cancer: The OASIS-CANCER Study

Mi Ji Lee,^{*} Jong-Won Chung,^{*} Myung-Ju Ahn,^{*} Seonwoo Kim,^c Jin Myoung Seok,^{*} Hye Min Jang,^{*} Gyeong-Moon Kim,^{*} Chin-Sang Chung,^{*} Kwang Ho Lee,^{*} Oh Young Bang^{*} Departments of "Neurology and ^{*}Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea "Biostatistics Team, Samsung Biomedical Research Institute, Samsung Medical Center, Soul, Korea

Journal of Stroke 2017 19(1) 77-87

Treated d-dimer and mortality

Survival probability

В

CONCLUSIONS

- Rely on neurology to make a stroke diagnosis
- Tailor testing to individual patient characteristics
- Making a diagnosis *is* "changing management"

