Does the presence of atrial septal aneurysm and/or a large degree of shunting identify patients most likely to benefit? Yes!

Guillaume TURC, MD, PhD
Neurologist
Paris Descartes University
Sainte-Anne hospital
Paris, France

Disclosure Statement of Financial Interest

I, Guillaume Turc DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Does the presence of ASA and/or a large shunt identify patients most likely to benefit from PFO closure ?

- Are patients with ASA and/or large shunt at higher risk of recurrent stroke ?
- Is presence of ASA and/or large shunt a modifier of the effect of PFO closure on recurrent stroke prevention?

Does the presence of ASA and/or a large shunt identify patients most likely to benefit from PFO closure ?

- Are patients with ASA and/or large shunt at higher risk of recurrent stroke ?
- Is presence of ASA and/or large shunt a modifier of the effect of PFO closure on recurrent stroke prevention?

Higher risk of stroke recurrence in patients with ASA or large shunt

- Pathophysiological plausibility
- ASA associated with larger PFO size and prominent Eustachian valve
- Increased septal mobility may enhance the probability of paradoxical embolism by mechanically directing blood flow from the inferior vena cava into the PFO

Higher risk of stroke recurrence in patients with ASA or large shunt

- Indirect evidence: case-control studies
- Cryptogenic strokes vs. strokes of determined cause (Overell et al, Neurology 2000)

(n studies)	Random-effects meta-analysis OR (95\% CI)
PFO (22)	$3.2(2.3-4.4)$
ASA (4)	$3.7(1.3-10.0)$
PFO + ASA (2)	$\mathbf{2 3 . 3}(\mathbf{5 . 2 - 1 0 3 . 2)}$

- Cryptogenic strokes vs. no stroke among patients with PFO (Goel et al, Am J Cardiol 2009)

Patent foramen ovale morphology			
Morphologic Characteristic	Symptomatic PFO (Stroke or TIA) $(\mathrm{n}=58)$	Asymptomatic PFO $(\mathrm{n}=58)$	p Value
	3.9 ± 1.6	2.9 ± 1.4	0.001
Size (mm)	$27(46 \%)$	$10(17 \%)$	0.001
Large PFO (size $\geq 4 \mathrm{~mm})$	$26(45 \%)$	$12(21 \%)$	0.005
Presence of ASA	14 ± 6	12 ± 6	0.05
Length of the tunnel (mm)	$45(78 \%)$	$32(55 \%)$	0.01
Long tunnel $(\geq 1 \mathrm{~cm})$			
Degree of shunting	$30(52 \%)$	$35(60 \%)$	0.34
Mild	$12(21 \%)$	$12(21 \%)$	1.0
Moderate	$9(16 \%)$	$3(5 \%)$	0.06
Severe	$12(21 \%)$	$9(16 \%)$	0.4
Prominent Eustachian valve	$1(2 \%)$	$1(2 \%)$	1.0
Prominent Chiari's network			

Higher risk of stroke recurrence in patients with ASA or large shunt

- Direct evidence: prospective cohort study (Mas et al, NEJM 2001)
- 581 patients ≤ 55 y.o. with recent cryptogenic stroke undergoing TEE (central reading)
- Standardized treatment: aspirin
- Mean F-U: 37.7 +/- 9.8 months
- 24 Strokes, 13 TIAs
(blinded adjudication)
Stroke or TIA; Log Rank, p $=0.04$

Stroke recurrence	4 year- risk $(95 \% ~ C I)$	Annual risk	Adjusted HR $(95 \% ~ C I)$
No PFO, no ASA $(\mathrm{n}=304)$	4.2 $(1.8-6.6)$	1.1	1
PFO, no ASA $(\mathrm{n}=216)$	2.3 $(0.3-4.3)$	0.6	0.9 $(0.3-2.4)$
ASA, no PFO $(\mathrm{n}=10)$	-	-	-
PFO and ASA $(\mathrm{n}=51)$	15.2		
$(1.8-28.6)$	4.0	4.2 $(1.5-11.8)$	
	Small shunt	Large shunt	
HR (95\%CI) versus no PFO	1.01 $(0.23-4.52)$	1.10 $(0.39-3.11)$	

Does the presence of ASA and/or a large shunt identify patients most likely to benefit from PFO closure ?

- Are patients with ASA and/or large shunt at higher risk of recurrent stroke ?
- Is presence of ASA and/or large shunt a modifier of the effect of PFO closure on recurrent stroke prevention?

ASA and/or large shunt: an effect modifier?

- Subgroup analyses of RCTs of PFO closure vs. medical therapy

Study	CLOSURE I (2012)	PC Trial (2013)	RESPECT $(2013 ; 2017)$	CLOSE (2017)	REDUCE (2017)
Sample size	$\mathrm{N}=909$	$\mathrm{~N}=414$	$\mathrm{~N}=980$	$\mathrm{~N}=663$	$\mathrm{~N}=664$
Definition of large shunt	≥ 25 bubbles	>20 bubbles	>20 bubbles	>30 bubbles	>25 bubbles
Definition of ASA	$\geq 10 \mathrm{~mm}$	$\geq 15 \mathrm{~mm}$	$\geq 10 \mathrm{~mm}$	$>10 \mathrm{~mm}$	$?$
Large shunt (\%)	20.8%	21.7%	48.8%	94.2% (with or without ASA)	40.7%
ASA	36.6%	23.7%	35.7%	34.7%	20.4% (closure arm)
(\%)	-	-	Patients included only if large shunt or PFO + ASA	Information on ASA only available for closure arm	

ASA and/or large shunt: an effect modifier?

- Subgroup analyses of RCTs of PFO closure vs. medical therapy
- RESPECT extended follow-up (Saver et al, NEJM 2017)

- Such an interaction was not observed in CLOSURE I or PC Trial

Does the presence of ASA and/or a large shunt identify patients most likely to benefit from PFO closure?

- Several clues in favor of this hypothesis
- But an updated individual patient data meta-analysis is required to (hopefully) provide definitive answers, by:
- Standardizing definition of outcome (recurrent stroke) +/- definition of ASA/large shunt
- Adjusting for potential confounders
- Addressing missing data by multiple imputation
- Will we have sufficient statistical power?

