

Endovascular Acute Ischemic Stroke Therapy The Evolving Landscape

Aman B. Patel, MD Massachusetts General Hospital Harvard Medical School

Within the past 12 months, I have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

Consulting Fees/Honoraria

Company

- Covidien
- Penumbra

CONCEPTS

The Basis of Acute Stroke Therapy

The "recanalization hypothesis"

- i.e. reopening of occluded vessels improves clinical outcome in acute ischemic stroke through reperfusion and salvage of threatened tissues.
- Several biologic factors weaken the relationship of recanalization to outcome in acute ischemic stroke patients:
 - time
 - collateral circulation
 - reperfusion injury...

Rha/Saver – Recan. Meta Analysis

- Review all 53 published papers (1985-2002) with data regarding vessel recanalization and functional outcome (2066 cases)
- Recanalization was assessed by catheter angiography in 46, TCD/MRA/SPECT in 7
- Clinical outcome by revascularization status was available in 33 papers for 998 patients
- "Formal meta-analysis confirms a strong correlation ^{20.0%} between recanalization and outcome in acute ischemic stroke."

Outcome is Time Dependent

Probability of good clinical outcome over time to technically successful angiographic reperfusion

The typical LVO patient loses 1.9 million neurons/min in which stroke is untreated

NEUROSURGERY

Khatri P et al. Neurology 2009 Saver J, Stroke 2006

Reperfusion Must be Robust

The only statistically significant difference between successive grades was 2A versus 2B (P<0.0001).

(Similar results reported in DEFUSE 2, IMS III)

The Basis of Endovascular Therapy

- 1. Establish hollow lumen from access to target
- 2. Work through that lumen
- For stroke care:
 - Establish a lumen from groin to clot face
 - Dissolve clot
 - IA lytic (tPA or urokinase)
 - Microwire, balloon or catheter disruption
 - Extract clot
 - Mechanical thrombectomy

Background

- In 2015, 5 randomized controlled trials demonstrated superiority of endovascular thrombectomy to IV tPA alone for acute ischemic stroke (AIS) caused by an anterior circulation emergent large vessel occlusion (ELVO)
 - Next-generation devices
 - More effective recanal
 - Faster recanalization
 - Advanced imaging algorithms
 - Better patient selection

Background, cont.

- Stentriever thrombectomy with or without aspiration assistance was the predominant technique employed in all 5 trials
- The 2015 AHA/ASA guidelines specifically recommend endovascular therapy with a stentriever for all patients with ELVOs

Study	% stentriever
MR CLEAN	81.5
ESCAPE	86
REVASCAT	100
SWIFT PRIME	100
EXTEND IA	100

Eye-catching Numbers

"2.8 pts treated to improve mRS by a point in 1.3.2 patients treated to produce functional outcome in 1."

EXTEND-IA

"NNT=3 for improved mRS by 1 point. NNT=4 for independent outcome." ESCAPE

"Increase in good outcomes from 1 in 5 to 1 in 3 after endovascular treatment" MR CLEAN

"64 more days at home in the first 90 days after treatment" *EXTEND-IA*

Why Did These Trials Succeed?

1. They all used new devices

• Significantly more efficient at recanalization to a TICI 2b/3 result.

2. They used advanced imaging protocols

- To confirm the presence of an occlusion
- To assess parenchyma or penumbra

Thrombectomy Options

Solitaire

Machi P et al. J NeuroIntervent Surg 2012 Nogueira R G et al. J NeuroIntervent Surg 2012

Stentrievers: Solitaire Platinum

Solitaire[™] 2 device – 4x40

Solitaire[™] Platinum device – 4x40

NEUROSURGERY

Stentrievers: Trevo Provue

Active Push Deployment

Wiesmann et al, JNIS 2016

Active Push Deployment

XE

Haussen et al. Stroke. 2015

Wiesmann et al, JNIS 2016

MEDICAL SCHOOL

Push and Fluff Technique

Associated with: ↑ first pass effect ↑ TICI 3 ↓ number of passes

Stroke Case: Stentriever

64M PMH gout LSW 0630h, developed dizziness, dysarthria, facial droop and left hemiparesis, NIHSS 19, received IV tPA, transferred to MGH for IAT evaluation, CTA confirmed R-MCA M1 occlusion.

NEUROSURGERY

Outcome

Immediate post procedure improvement to NIHSS 5 By hospital day 3, NIHSS 0

NEUROSURGERY

GENERAL HOSPITAL

MGH

Aspiration Systems

ADAPT: A Direct Aspiration first Pass Technique

Aspiration Systems

NEUROSURGERY

ADAPT Technique

Stroke, ADAPT Case

- 48M LSW 11:30am with NIHSS 4 L MCA syndrome (no IV tPA), followed by an acute neurological decline 3am the following day; groin puncture 5:12am
- TICI 2b recanalization s/p 1 pass ADAPT; 20 mins groin puncture to recanalization

NEUROSURGERY

So what is important?

- Patient selection YES
- Time YES
- Imaging YES
- Recanalization YES!!!!
- Method of Recanalization ????
- Complications YES

Direct aspiration first-pass technique (ADAPT) versus stentriever thrombectomy in emergent large vessel intracranial occlusions

 Methods: To compare the angiographic and clinical outcomes of ADAPT versus stentriever thrombectomy in patients with emergent large vessel occlusions (ELVO) of the anterior intracranial circulation, the records of 129 patients from June 2012 to October 2015 were retrospectively reviewed.

Results

PATIENT DATA	ADAPT, No. (%)	Stentriever, No. (%)	<i>P</i> value
Total patients	47	70	
Age*	63.5	69.4	0.04
Male	27 (57.4)	34 (48.6)	0.45
NIHSS*	16.5	16.5	0.94
Baseline mRS >1 • Pa	atients were slight	y younger in the A	ADAPT cohort
Hypertension	37 (78.7)	50 (71.4)	0.40
• NC Diabetes mellitus	o differences in oth	ner baseline facto	rs _{0.83}
Smoking (current or past)	11 (23.4)	10 (14.3)	0.23
Atrial fibrillation	16 (34.0)	35 (50)	0.13
Coronary artery disease	12 (25.5)	22 (31.4)	0.30
Previous stroke	8 (17.0)	14 (20)	0.81

*mean

PRE-PROCEDURAL DATA	ADAPT, No. (%)	Stentriever, No. (%)	<i>P</i> value			
Total patients	47	70				
Intravenous tPA	34 (72.3)	40 (57.1)	0.56			
Onset to intravenous tPA (mins)*	128.9	132.1	0.78			
ASPECTS*	8	8.3	0.34			
Location of intracranial occlusion • No differences in any pre-procedural factors						
ICA	12 (25.5)	13 (18.6)	0.15			
M1 MCA	33 (70.2)	43 (61.4)				
M2 MCA	2 (4.3)	14 (20)				
Left side	24 (51.1)	35 (50)	>0.99			

*mean

	No statis	sticent differ	ence in	rates%of		P value ²	P value ³
AL DATA		ZationAPT failure/Stentri ever rescue	Total				
Total patients	57.4% (2	27/472) of p	atients i		group h	ad	
Onset to groin puncture (mins)*	SUCCESS	ful recanal	ization v	vith _{284.7} spi	rati <u>on</u> alor	ne _{-0.01}	0.58
ADAPT attempts*	recahaliz	zatioh ³ and	shortes	t proced	ure times	nes lo	
Stentriever attempts*	compare	ed to all gro	oups.	1.9			0.27
CASPER	Nood to i	20 (100) Stoptric	wor adiur	39(55.7)	ADTdid no	t affact	<0.01
TICI 2b/3 recanalization		anlization o	r procedi			Stentrieve	0.26 Pr
Onset to TICI 2b/3 recanalization (mins)*	alone	345.5	294.3	346.7	<0.01	<0.01	0.74
Procedural time (mins)*	41.8	70.4	54.0	77.1	<0.01	<0.01	0.33
Procedural complication	2 (7.4)	1 (5)	3 (6.4)	5 (7.1)	>0.99	>0.99	>0.99

*mean ¹ADAPT versus Stentriever

²ADAPT success versus Stentriever

³ADAPT failure/Stentriever rescue versus Stentriever

OUTCOME DATA	ADAPT, No. (%)		Stentriever, No. (%)	P value ¹	P value ²	P value ³	
	ADAPT success	ADAPT failure/Stentr iever rescue	Total				
Total patients	27	20	47	70			
Any intracranial hemorrhage	6 (22.2)	11 (55)	17 (36.2)	22 (31.4)	>0.99	0.46	0.07
Symptomatic intracranial hemorrhage	1 (3.7)	5 (25)	6 (12.8)	7 (10)	0.77	0.44	0.13
Disposition • No Home SC	o differ ores	ences ir	7-day 5 (10.6)	NIHSS 14 (20)	or 90-da	ay mRS	0.07
Rehabilitation	22 (81.5)	14 (70)	36 (76.6)	47 (67.1)			
≯7-day NIHSS*	6.4	9.3	7.6	7.3	0.81	0.55	0.24
90-day mRS*	2.2	3.3	2.7	3.0	0.83	0.23	0.53
90-day mRS 0-2	14 (51.9)	9 (45)	23 (48.9)	29 (41.4)	0.45	0.37	0.80
Death	1(3.7)	5 (25)	6 (12.8)	13 (18.6)	0.45	0.06	0.54

*mean ¹ADAPT versus Stentriever ²ADAPT success versus Stentriever ³ADAPT failure/Stentriever rescue versus Stentriever

FACTORS PREDICTIVE of	Odds ratio	Coefficient	P value		
<u>90-day mRS 0-2</u>					
Endovascular thrombectomy			0.47		
technique					
Age	0.95	-0.05	< 0.01		
Previous stroke	0.11	-2.22	< 0.01		
	0.05	0.40	0.04		
NIHSS	0.85	-0.16	0.01		
TICI 2b/3 reconsideration	1 1 23 37	. 315	40.01 4		
90-day functional outcomes were not dependent					
	-	•			

Time to groin puncture (mine) pon endovascular thrombectiony technique 0.03

FACTORS PREDICTIVE of	Odds ratio	Coefficient	P value		
<u>90-day mRS 0-2</u>					
Endovascular thrombectomy technique	0.47				
Age • 90 day	mRS was highly o	dependent	< 0.01		
Previous stroke – ability to achieve recanalization (OR=23.37) $^{<0.01}$					
NIHSS	0.85	-0.16	0.01		
TICI 2b/3 recanalization time	to groin puncture	9. 3.15	< 0.01		
Time to groin puncture (mins)	0.1	-0.005	0.03		

REVASCULARIZATION in the **SHORTEST TIME PERIOD** is the key to **GOOD OUTCOME**

Thank you

NEUROSURGERY