

How to Assess Coronary Obstruction Risk on CT Prior to Aortic Valve-in-Valve Procedures

Philipp Blanke, MD

Department of Radiology University of British Columbia & St. Paul's Hospital, Vancouver

Disclosures

Consultant to

Edwards Lifesciences

Neovasc

Circle Imaging

SPH Cardiac CT Core Lab, providing services to

Edwards Lifesciences

Neovasc

Tendyne Holdings

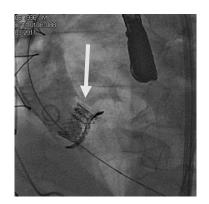
Medtronic

Coronary obstruction in Valve-in-Valve Procedures

Background

Original Investigation

Transcatheter Aortic Valve Implantation in Failed Bioprosthetic Surgical Valves

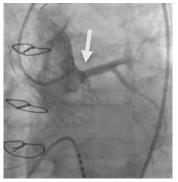

Danny Dvir, MD; John G. Webb, MD; Sabine Bleiziffer, MD; Miralem Pasic, MD, PhD; Ron Waksman, MD; Susheel Kodali, MD; Marco Barbanti, MD; Azeem Latib, MD; Ulrich Schaefer, MD; Josep Rodés-Cabau, MD; Hendrik Treede, MD; Nicolo Piazza, MD, PhD; David Hildick-Smith, MD; Dominique Himbert, MD; Thomas Walther, MD; Christian Hengstenberg, MD; Henrik Nissen, MD, PhD; Raffi Bekeredjian, MD; Patrizia Presbitero, MD; Enrico Ferrari, MD; Amit Segev, MD; Arend de Weger, MD; Stephan Windecker, MD; Neil E. Moat, FRCS; Massimo Napodano, MD; Manuel Wilbring, MD; Alfredo G. Cerillo, MD; Stephen Brecker, MD; Didier Tchetche, MD; Thierry Lefèvre, MD; Federico De Marco, MD; Claudia Fiorina, MD; Anna Sonia Petronio, MD; Rui C. Teles, MD; Luca Testa, MD; Jean-Claude Laborde, MD; Martin B. Leon, MD; Ran Kornowski, MD; for the Valve-in-Valve International Data Registry Investigators

- 459 patients with failed surgical bioprostheses
- Coronary obstruction in 2% of ViV procedures (3.5% 2012)
- Predispoing valve types: internally stented Mitroflow, Trifecta, stentless

Complications Remain-Ostial Coronary Obstruction

Center #30, case#3 Mitroflow 25mm (ID 21mm) Tranapical Edwards-SAPIEN 23mm

Center #29, case#7 Sorin Freedom Stentless 21mm (ID 19mm) Balloon Valvuloplasty before attempted CoreValve implantation


Center #13, case#4 Sorin Freedom Stentless 23mm (ID 21mm) Transfemoral CoreValve 26mm

Center #37, case#9 Mitroflow 21mm (ID 17.3mm) Transapical Edwards-SAPIEN 23mm

Center #34, case#6 Mitroflow 21mm (ID 17.3mm) Tranfemoral CoreValve 26mm

Center #27, case#3 CryoLife O'Brien (stentless) 25mm (ID 23mm) Transfemoral CoreValve 29mm

Center #11, case#11 Mosaic 21mm (ID 18.5mm) Transapical Edwards-SAPIEN 23mm

Courtesy of Danny Dvir/VIVID Registry

Coronary obstruction in Valve-in-Valve Procedures

Valve design

Mitroflow #27 in an aortic root model

Valve-in-Valve with SAPIEN 29mm

Dvir et al. 2014

Coronary obstruction in Valve-in-Valve Procedures

Potential risk factors

- Anatomic factors
 - Narrow sinotubular junction/low sinus height
 - Narrow sinuses of Valsalva
 - Previous root repair (eg. root graft and coronary reimplantation)
 - Low-lying coronary ostia
- Bioprosthetic valve factors
 - Supra-annular position vs. Intra-annular
 - High leaflet profile
 - Internal stent frame (eg. MitroFlow, Trifecta)
 - No stent frame (homograft, stentless valves)
 - Bulky leaflets
- Transcatheter valve factors
 - Extended sealing cuff
 - High implantation

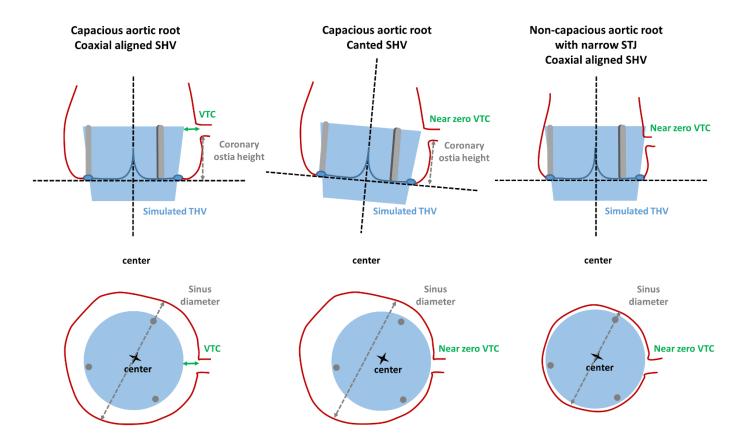
Anatomical issues and potential measurements

Common native root anatomy measures:

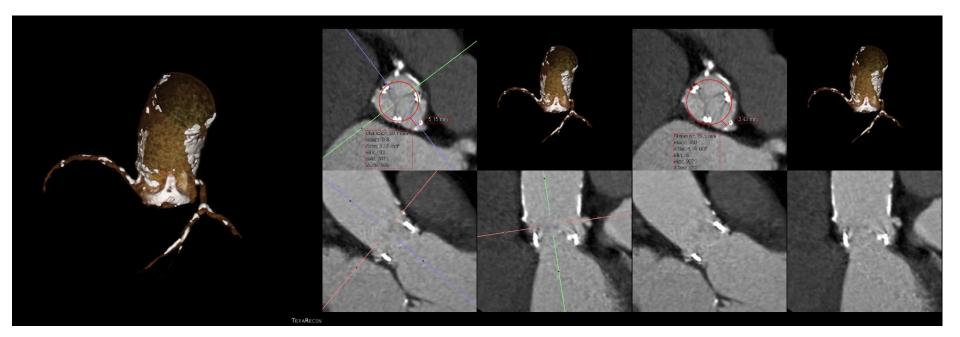
- Coronary artery height
- Sinus of Valsalva with
- Sinus height

versus

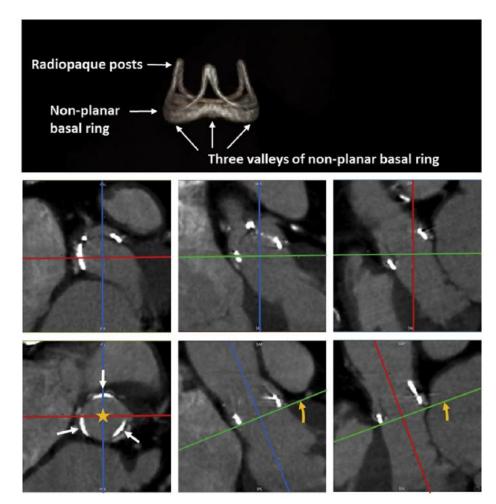
Distortion of Anatomy


- Tilting of the surgical prosthesis
- Lower coronary height

Prediction of the the proximity of the coronary ostia to the anticipated final position of the displaced bioprosthetic leaflets after THV implantation


Virtual THV to Coronary (VTC) distance

Dvir et al. 2014, Blanke et al. 2016

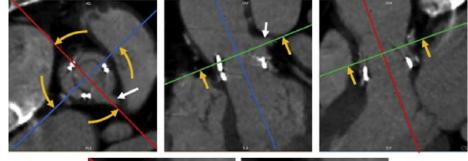


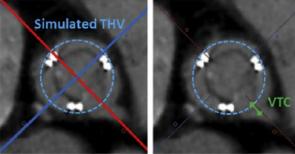
Virtual THV to Coronary (VTC) distance

Step 1: Identify SHV, e.g. using a volume rendering

Step 2: Center cross-hairs with SHV

Step 3: Manipulate cross-hairs for double-oblique transverse plane to match basal ring (here three valleys, white arrows); center of cross-hairs centered within basal ring (asterisk)




Blanke et al. JCCT 2016

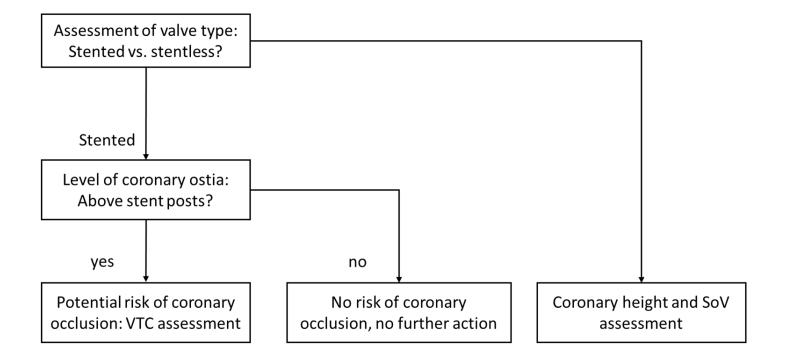
Virtual THV to Coronary (VTC) distance

Step 4: Move double-oblique transverse plane to level of coronary ostium (here left main, white arrows); rotate views for better visualization of coronary ostium

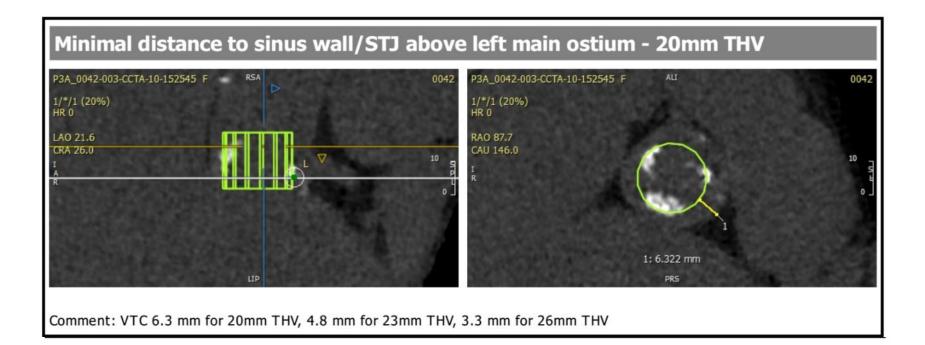
Step 5: Simulate THV e.g. using a region of interest of a specific diameter (dashed circle, center matches center of cross-hairs); subsequently assess VTC as distance measurement between simulated THV and coronary orifice (green line)

Virtual THV to Coronary (VTC) distance

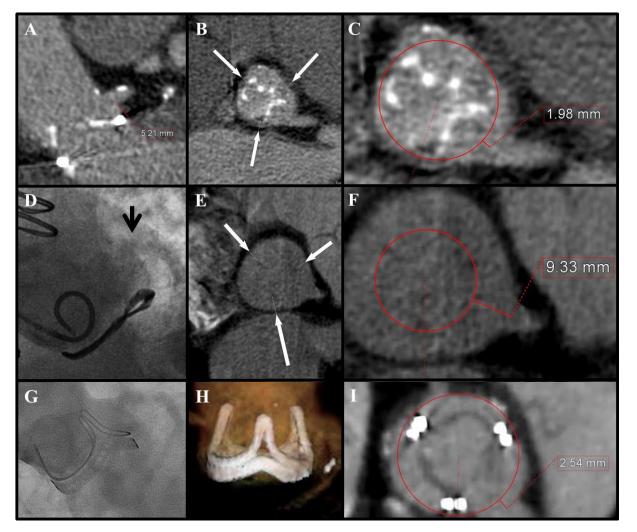
Advanced postprocessing


Pay attention to STJ above ostium as sealing may occur up there!

Blanke et al. JCCT 2016

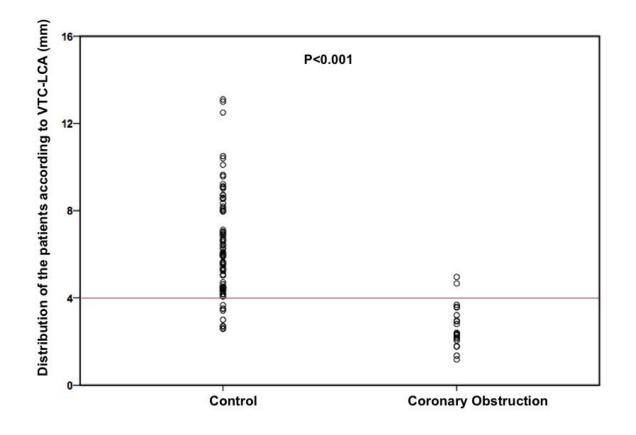

Workflow

Virtual THV to Coronary (VTC) distance



Non-contrast images are sufficient, but need to be gated!

Example



Dvir et al. 2014

Virtual THV to Coronary (VTC) distance

Magic number – 4mm?

VIVID Registry, presented at TCT 2016 (Ribiero et al)