How to Assess Coronary Obstruction Risk on CT Prior to Aortic Valve-in-Valve Procedures

Philipp Blanke, MD
Department of Radiology
University of British Columbia & St. Paul's Hospital, Vancouver
Disclosures

Consultant to

Edwards Lifesciences
Neovasc
Circle Imaging

SPH Cardiac CT Core Lab, providing services to
Edwards Lifesciences
Neovasc
Tendyne Holdings
Medtronic
Coronary obstruction in Valve-in-Valve Procedures

Background

Original Investigation

Transcatheter Aortic Valve Implantation in Failed Bioprosthetic Surgical Valves

Danny Dvir, MD; John G. Webb, MD; Sabine Bleiziffer, MD; Miralem Pasic, MD, PhD; Ron Waksman, MD; Susheel Kodali, MD; Marco Barbanti, MD; Azeem Latib, MD; Ulrich Schaefer, MD; Josep Rodés-Cabau, MD; Hendrik Treede, MD; Nicolo Piazza, MD, PhD; David Hildick-Smith, MD; Dominique Himbert, MD; Thomas Walther, MD; Christian Hengstenberg, MD; Henrik Nissen, MD, PhD; Raffi Bekeredjian, MD; Patrizia Presbitero, MD; Enrico Ferrari, MD; Amit Segev, MD; Arend de Weger, MD; Stephan Windecker, MD; Neil E. Moat, FRCS; Massimo Napodano, MD; Manuel Wilbring, MD; Alfredo G. Cerillo, MD; Stephen Brecker, MD; Didier Tchetche, MD; Thierry Lefèvre, MD; Federico De Marco, MD; Claudia Fiorina, MD; Anna Sonia Petronio, MD; Rui C. Teles, MD; Luca Testa, MD; Jean-Claude Laborde, MD; Martin B. Leon, MD; Ran Kornowski, MD; for the Valve-in-Valve International Data Registry Investigators

- 459 patients with failed surgical bioprostheses
- Coronary obstruction in 2% of ViV procedures (3.5% 2012)
- Predisposing valve types: internally stented Mitroflow, Trifecta, stentless
Complications Remain - Ostial Coronary Obstruction

Center #11, case#11
Mosaic 21mm (ID 18.5mm)
Transapical Edwards-SAPIEN 23mm

Center #37, case#9
Mitroflow 21mm (ID 17.3mm)
Transapical Edwards-SAPIEN 23mm

Center #34, case#6
Mitroflow 21mm (ID 17.3mm)
Transfemoral CoreValve 26mm

Center #13, case#4
Sorin Freedom Stentless 23mm (ID 21mm)
Balloon Valvuloplasty
before attempted CoreValve implantation

Center #29, case#7
Sorin Freedom Stentless 21mm (ID 19mm)
Transfemoral CoreValve 26mm

Center #27, case#3
CryoLife O’Brien (stentless) 25mm (ID 23mm)
Transfemoral CoreValve 29mm

Center #13, case#11
Mosaic 21mm (ID 18.5mm)
Transapical Edwards-SAPIEN 23mm

Courtesy of Danny Dvir/VIVID Registry
Coronary obstruction in Valve-in-Valve Procedures

Valve design

Mitroflow #27 in an aortic root model

Valve-in-Valve with SAPIEN 29mm

Dvir et al. 2014
Coronary obstruction in Valve-in-Valve Procedures

Potential risk factors

• Anatomic factors
 • Narrow sinotubular junction/low sinus height
 • Narrow sinuses of Valsalva
 • Previous root repair (eg. root graft and coronary reimplantation)
 • Low-lying coronary ostia

• Bioprosthetic valve factors
 • Supra-annular position vs. Intra-annular
 • High leaflet profile
 • Internal stent frame (eg. MitroFlow, Trifecta)
 • No stent frame (homograft, stentless valves)
 • Bulky leaflets

• Transcatheter valve factors
 • Extended sealing cuff
 • High implantation
Assessment for Valve-in-Valve Procedures

Anatomical issues and potential measurements

Common native root anatomy measures:
- Coronary artery height
- Sinus of Valsalva with
- Sinus height

Distortion of Anatomy
- Tilting of the surgical prosthesis
- Lower coronary height

Prediction of the proximity of the coronary ostia to the anticipated final position of the displaced bioprosthetic leaflets after THV implantation
Assessment for Valve-in-Valve Procedures

Virtual THV to Coronary (VTC) distance

Assessment for Valve-in-Valve Procedures

Virtual THV to Coronary (VTC) distance

Step 1: Identify SHV, e.g. using a volume rendering

Step 2: Center cross-hairs with SHV

Step 3: Manipulate cross-hairs for double-oblique transverse plane to match basal ring (here three valleys, white arrows); center of cross-hairs centered within basal ring (asterisk)
Assessment for Valve-in-Valve Procedures

Virtual THV to Coronary (VTC) distance

Step 4: Move double-oblique transverse plane to level of coronary ostium (here left main, white arrows); rotate views for better visualization of coronary ostium.

Step 5: Simulate THV e.g. using a region of interest of a specific diameter (dashed circle, center matches center of cross-hairs); subsequently assess VTC as distance measurement between simulated THV and coronary orifice (green line).
Assessment for Valve-in-Valve Procedures

Virtual THV to Coronary (VTC) distance

Advanced postprocessing

Pay attention to STJ above ostium as sealing may occur up there!
Assessment of valve type: Stented vs. stentless?

- Stented
 - Level of coronary ostia: Above stent posts?
 - yes
 - Potential risk of coronary occlusion: VTC assessment
 - no
 - No risk of coronary occlusion, no further action
 - Coronary height and SoV assessment
Assessment for Valve-in-Valve Procedures

Virtual THV to Coronary (VTC) distance

Minimal distance to sinus wall/STJ above left main ostium - 20mm THV

Comment: VTC 6.3 mm for 20mm THV, 4.8 mm for 23mm THV, 3.3 mm for 26mm THV

Non-contrast images are sufficient, but need to be gated!
Assessment for Valve-in-Valve Procedures

Example

Dvir et al. 2014
Assessment for Valve-in-Valve Procedures

Virtual THV to Coronary (VTC) distance

![Graph showing distribution of patients according to VTC-LCA (mm)](image)

P < 0.001

Magic number – 4mm?

VIVID Registry, presented at TCT 2016 (Ribiero et al)