

Mechanism of Flow Diverter Healing

Matthew Gounis, PhD Professor, Department of Radiology New England Center for Stroke Research WLNC 2017, Los Angeles

In Situ Tissue Engineering

The objective of this study:

 to demonstrate formation of the basement membrane and subsequent endothelialzation rates as a function of FD design

Study Design

Animal grouping	Number of 72-wire FDs	Number 48-Wire FDs	FD implant procedure	Duration
Group 1	2	2	4	10 (± 1) days
Group 2	2	2	4	20 (± 2) days
Group 3	2	2	4	30 (± 2) days
Group 4	2	2	4	60 (± 2) days
Totals	8	8	16	

DAPT: 10mg/kg clopidogrel and 1mg/kg ASA

ER `H

wide neck aneurysm along with distal fusiform vessel

complex, multilobular aneurysm

small neck aneurysm along with distal fusiform vessel

Grouping of aneurysm was based on:

- aneurysm morphology
- Vessel diameter proximal and distal to the aneurysm
- Length of proximal segment of the vessel landing zone!!

	48-wire	72-wire	p-value
aneurysm height	6.9 ±1.8	7.1 ±1.6	0.86
aneurysm width	5.5 ±2.3	5.0 ±1.9	0.64
aneurysm neck	5.3 ±1.9	4.6 ±1.4	0.47
aspect ratio	1.4 ±0.5	1.6 ±0.4	0.42
parent vessel diameter 5mm distal the aneurysm	4.6 ±1.0	4.4 ±0.6	0.64

A.) Pre-procedural DSA, frontal view

B.) Post-implant angiography, FD is not apposed at the proximal site; C.) angioplasty

D-E.) VasoCT, distal end of FD slightly compressed (deployed into a 2.5mm vessel), part bad apposition proximally F.) after 2 attempt of angioplasty DSA showed improved apposition (arrow-head)

Basement Membrane

Important first step, forms substrate for endothelialization

Table 1. Scoring system for assessing the rate of flow diverter endothelialization (S-FDE)

R
Н

Score	Coverage of Struts	Description of Coverage
0	0%	No coverage
1	1-25%	Contains EPCs, inflammatory cells, red blood cells, proteins, and other components such as fibrin and collagen
2	26-50%	Contains EPCs, inflammatory cells, red blood cells, proteins, and other components such as fibrin and collagen for the beginning of the basement membrane
3	51-75%	Contains EPCs, inflammatory cells, red blood cells, proteins, and other components such as fibrin and collagen creating the basement membrane
4	76-99%	Contains EPCs and/or endothelial cells along with the components of the basement membrane
5	100%	Fully Endothelialized

NEW ENGLAND CENTER

FOR STROKE RESEARCH

- 48-Wire (Device-1): EC scores related to location (p=0.083)
- 72-Wire (Device-2): EC scores are function of time (p=0.013)

A.) 500x, image of the inner surface of the NEG implant, 10days after implantation
B.) 10,000x, the immuno-gold labeling on the surface of the cell (white arrows)
C.) manually zoom of the image B for better visualization of the gold nanoparticles

Flow Diversion: Summary

- Evidence: curative treatment of brain aneurysms
 - Treats diseased segment of the blood vessel
 Endoluminal reconstruction is ideal
- Engineer construct and surface properties to promote rapid endothelialization
- Need to remove dependency on dual antiplatelet medication
- Need imaging tools developed specifically for technology to ensure proper deployment

UMass Collaborations

- Marc Fisher, MD
- Neil Aronin, MD
- Alexei Bogdanov, PhD
- Greg Hendricks, PhD
- Guanping Gao, PhD
- Miguel Esteves, PhD
- Linda Ding, PhD
- Srinivasan Vedantham, PhD
- John Weaver, MD

Collaborations

- Youssef Wadghiri, PhD NYU
- Peter Caravan, PhD MGH
- Italo Linfante, MD Baptist
- Guilherme Dabus, MD Baptist
- Don Ingber, PhD Harvard
- Netanel Korin, PhD Technion
- Johannes Boltze, MD, PhD Frauhofer Institute
- Raul Nogueira, MD Emory

NECStR

- Ajay Wakhloo, MD, PhD
- Ajit Puri, MD
- Juyu Chueh, PhD
- Miklos Marosfoi, MD
- Martijn van der Bom, PhD
- Kajo van der Marel, PhD
- Anna Kühn, MD, PhD
- Ivan Lylyk, MD
- Frédéric Clarençon, MD, PhD
- Bo Hong, MD
- Mary Howk, MS, CRC
- Thomas Flood, MD, PhD
- Erin Langan, BS
- Olivia Brooks
- Robert King, MS
- Chris Brooks, PA
- Shaokuan Zheng, PhD