Results Of The Systematic Evaluation Of Patients TReated With Neurothrombectomy Devices For AcuTe Ischemic Stroke (STRATIS) Registry: Key Messages

OSAMA O ZAIDAT, MD, MS NEUROSCIENCE & STROKE DIRECTOR MERCY HEALTH ST VINCENT CENTER, TOLEDO, OH

ON BEHALF OF STRATIS INVESTIGATORS:

INDEPENDENT STRATIS STEERING COMMITTEE:

NILS H. MUELLER-KRONAST, MD; OSAMA O. ZAIDAT, MD; MICHAEL T. FROEHLER, MD, PHD; REZA JAHAN, MD; M. ALI AZIZ-SULTAN, MD; RICHARD KLUCZNIK, MD; JEFFREY L. SAVER, MD INDEPENDENT IMAGING CORE LAB BLINDED TO CLINICAL OUTCOME: DAVID S. LIEBESKIND, MD INDEPENDENT TECHNIQUE CORE LAB BLINDED TO CLINICAL OUTCOME : OSAMA ZAIDAT, MD

INVESTIGATORS: FRANK R. HELLINGER, JR., MD, PHD; DILEEP R. YAVAGAL, MD; TOM L. YAO, MD; ASHUTOSH P. JADHAV, MD, PHD; RISHI GUPTA, MD; AMEER E. HASSAN, DO; COLEMAN O. MARTIN, MD; HORMOZD BOZORGCHAMI, MD; CURTIS A. GIVEN, II, MD; BRIJESH P. MEHTA, MD; VIVEK DESHMUKH, MD; SIDNEY STARKMAN, MD; ITALO LINFANTE, MD; SCOTT MCPHERSON, MD; PETER KVAMME, MD; THOMAS GROBELNY, MD; SHAZAM HUSSAIN, MD; IKE THACKER, MD; NIRAV VORA, MD; ROC CHEN, MD; STEPHEN MONTEITH, MD; ROBERT ECKER, MD; CLEMENS SCHIRMER, MD; ERIC SAUVAGEAU, MD; ALEX ABOU-CHEBL, MD; DEWITTE CROSS, MD; LUCIAN MAIDAN, MD; AAMIR BADRUDDIN, MD; ADNAN H. SIDDIQUI, MD, PHD; TRAVIS DUMONT, MD; ABDULNASSER ALHAJERI, MD; MUHAMMAD TAQI, MD; KHALED ASI, MD; JEFFREY CARPENTER, MD; ALAN BOULOS, MD; GAURAV JINDAL, MD; AJIT PURI, MD; ROHAN CHITALE, MD; ERIC DESHAIES, MD; DAVID ROBINSON, MD; DAVID KALLMES, MD; BLAISE W. BAXTER, MD; MOUHAMMED JUMAA, MD; PETER SUNENSHINE, MD; ANIEL MAJJHOO, MD; JOEY ENGLISH, MD; SHUICHI SUZUKI, MD; RICH FESSLER, MD; JOSSER DELGADO, MD; JERRY MARTIN, MD; DIOGO C. HAUSSEN, MD

DISCLOSURE

 STRATIS IS A MULTI-CENTER ACUTE ISCHEMIC STROKE LVO SOLITIARE AND MINDFRAME DEVICES REGISTRY SPONSORED AND COORDINATED BY MEDTRONIC

OVERALL STRATIS KEY RESULTS BACKGROUND AND OVERVIEW

- SINCE THE PUBLICATION OF 5 SEMINAL RANDOMIZED CONTROLLED TRIALS (RCTS) IN 2014-15, MECHANICAL THROMBECTOMY (MT) WITH STENT-RETRIEVERS HAS **BECOME STANDARD OF CARE FOR TREATMENT OF ACUTE ISCHEMIC STROKE** PATIENTS DUE TO LARGE VESSEL OCCLUSION (LVO), RECOMMENDED BY VARIOUS SCIENTIFIC SOCIETAL GUIDELINES ACROSS THE WORLD.
- GIVEN THE HIGHLY SELECTED PATIENT POPULATION IN SOME OF THESE RCTS, **QUESTIONS REMAIN WHETHER PROCESS TIMELINES, TECHNICAL AND FUNCTIONAL** OUTCOMES CAN BE ACHIEVED IN A "REAL WORLD" SETTING.
- HERE WE PRESENTS THE PRELIMINARY STRATIS REGISTRY RESULTS;
 - OVERVIEW OF THE PRIMARY STRATIS RESULTS
 - OVERVIEW OF THE SYSTEM OF CARE OUTCOMES (TRANSFER VS DIRECT)
 - DIFFERENCE IN OUTCOMES BETWEEN VARIOUS ADJUNCTIVE MT TECHNIQUES

OVERALL STRATIS KEY RESULTS METHODS

Design/Objective	 Independent Steering Committee, imaging and core lab, & statistician Prospective, multi-center, observational, single-arm registry designed experience" <u>without</u> requirement of specialized triage imaging, age lime exclusions at academic and non-academic centers in the USA. Patients with large vessel occlusion (LVO) acute ischemic stroke (AIS) hours from symptom onset.
Endpoints & Evaluations	 Performance Time from puncture to revascularization (mTICI ≥ 2b) Revascularization assessment at the end of the procedure using TICI so <u>Clinical Efficacy</u> mRS at 90 days Safety All-cause mortality (up to 90 days post procedure) Incidence of symptomatic ICH <u>Reproducibility:</u> A patient-level comparison with SEER database was performed
Devices	 First neurothrombectomy device use must be: Solitaire[™] Revascularization Device MindFrame Capture[™] LP Device

d to capture a "real world hits or technique

were enrolled within 8

core

OVERALL STRATIS KEY RESULTS METHODS: SPECIFIC ADDITIONAL AIMS

TARGET

Answering the "real world" stroke questions and building a comprehensive representation of the patient population being treated with Medtronic stroke devices

1 Systems of Care

What are the key variables affecting time to treatment?

2 Role of Imaging

How does imaging selection method impact clinical outcome?

3 Interventional Technique

How does interventional technique (proximal vs. lesional aspiration) affect technical efficacy and clinical outcome?

General Anesthesia (4)

What are the effects of general anesthesia on workflow and clinical outcome? Will not be discussed (ESOC 2017)

5 Baseline Characteristics

What are the key baseline characteristics that affect clinical outcome? Will not be discussed

OVERALL STRATIS KEY RESULTS PRIMARY RESULTS

- **AUGUST 2014 TO JUNE 2016**
 - 1,000 PATIENTS WERE ENROLLED AT 55 US CENTERS
 - 16 PATIENTS WERE IDENTIFIED TO BE SCREEN FAILURES AND EXCLORED FROM THE ANALYSIS

Last Patient Follow Up & Database Lock

OVERALL STRATIS KEY RESULTS

COMPARISON OF BASELINE & WORKFLOW CHARACTERISTICS, CONTINUED

Characteristic	SEER Intervention	STR
Initial Qualifying NIHSS Score	16.6±4.9 (398) [17] (13,20)	17 .3 ± 5.5 (98
IV t-PA delivered	80.5% (323/401)	64.0% (
ASPECTS – per imaging core lab†	8.3 ± 1.7 (388) [9] (7.10)	8.2 ± 1.6 (7
Target Intracranial Occlusion Location	‡	
Not reported	2.5% (10/401)	0.8%
Internal Carotid Artery Terminus	<u> </u>	22.6% (2
MCA – First segment (M1)	71.1% (285/401)	54.7% (
MCA – Second segment (M2)	8.2% (33/401)	17.3% (
MCA– Third segment (M3)	0.0% (0/401)	0.2%
Posterior Circulation	0.0% (0/401)	4.5% (4

Data are % (n/N), or mean±SD (N), [median] (IQR). Abbreviations: ASPECTS, Alberta Stroke Program Early CT Score; mRS, modified Rankin Scale; mTICI, modified Thrombolysis in Cerebral Infarction; NIHSS, National Institutes of Health Stroke Scale. The protocol was amended to restrict enrollment to mRS 0-1 to ensure consistency with SWIFT PRIME enrollment criteria. †Baseline imaging received for 835 patients, of whom 72 were not evaluated for ASPECTS (38 Posterior stroke, 30 no non-contract CT, 4 not evaluable), resulting in 763 patients evaluable for ASPECTS. ‡For STRATIS, assessed by the Techniques Core Lab based on operative reports.

Stratis Registry Key Primary Results

(8/984)

222/984)

538/984)

170/984)

(2/984)

44/984)

OVERALL STRATIS KEY RESULTS COMPARISON OF BASELINE & WORKFLOW CHARACTERISTICS, CONTINUED

Characteristic	SEER Intervention	STRATIS	Р
Process Metrics			
Stroke onset to enrolling hospital arrival (door)	143.5 ± 122.2 (400)	149.3 ± 101.0 (907)	0.030
Stroke onset to alteplase initiation	122.9 ± 49.2 (322)	113.3 ± 50.5 (622)	0.001
Hospital arrival to alteplase initiation	28.7 ± 66.0 (265)	42.1 ± 26.5 (336)	0.503
Stroke onset to puncture	263.1 ± 194.7 (394)	226.4 ± 100.0 (976)	0.011
Hospital arrival to puncture	122.0 ± 173.7 (392)	80.1 ± 49.4 (901)	<0.001
Imaging to puncture	68.9±34.7 (394)	71.2 ± 46.4 (824)	0.642
Alteplase to puncture	107.2 ± 206.5 (259)	102.0 ± 73.5 (613)	0.001
Puncture to TICI 2b/3 or completion	45.9 ± 31.0 (348)	45.6 ± 29.0 (939)	0.740
Stroke onset to TICI 2b/3 or completion	293.6±126.5 (349)	271.1 ± 105.7 (945)	0.020
Hospital arrival to puncture Imaging to puncture Alteplase to puncture Puncture to TICI 2b/3 or completion Stroke onset to TICI 2b/3 or completion	$203.1 \pm 134.7 (394)$ $122.0 \pm 173.7 (392)$ $68.9 \pm 34.7 (394)$ $107.2 \pm 206.5 (259)$ $45.9 \pm 31.0 (348)$ $293.6 \pm 126.5 (349)$	$220.4 \pm 100.0 (970)$ $80.1 \pm 49.4 (901)$ $71.2 \pm 46.4 (824)$ $102.0 \pm 73.5 (613)$ $45.6 \pm 29.0 (939)$ $271.1 \pm 105.7 (945)$	 0.0011 0.642 0.001 0.740 0.020

Data are % (n/N), or mean±SD (N). Abbreviations: ASPECTS, Alberta Stroke Program Early CT Score; mRS, modified Rankin Scale; mTICI, modified Thrombolysis in Cerebral Infarction; NIHSS, National Institutes of Health Stroke Scale. The protocol was amended to restrict enrollment to mRS 0-1 to ensure consistency with SWIFT PRIME enrollment criteria.

OVERALL STRATIS KEY RESULTS PRIMARY CLINICAL EFFICACY OUTCOME: MODIFIED RANKIN DISTRIBUTION AT 90 DAYS

mRS at 90 days

Stratis Registry Key Primary Results

Shift analysis favored STRATIS over SEER OR 1.38 (95% Cl 1.11-1.71); p=0.004

OVERALL STRATIS KEY RESULTS KEY FINDINGS

DESPITE ENROLLING A NONSELECTIVE POPULATION WITH SIGNIFICANTLY HIGHER MEAN BASELINE NIHSS, HIGHER PERCENTAGE OF ICA T OCCLUSION, INCLUSION OF POSTERIOR CIRCULATION STROKES AND LONGER MEDIAN ONSET TO ARRIVAL TIME,

FAVORING SEER; STRATIS ACHIEVED SIMILAR TECHNICAL, SAFETY AND CLINICAL OUTCOMES.

Outcome	SEER	STR
Core Lab mTICI 2b-3	76.6%	87
sICH	2.5%	1.
mRS 0-2 at 90 Days	54.0%	56

WORKFLOW

- MEAN TIME FROM ONSET TO ARRIVAL WAS SIGNIFICANTLY LONGER IN STRATIS (5.8 MIN) COMPARED TO SEER.
- MEAN ONSET TO PUNCTURE TIME WAS 36.7 MINUTES SHORTER IN **STRATIS**, PRIMARILY DRIVEN BY A 41.9 MINUTE SHORTER MEAN DOOR TO PUNCTURE TIME.

Stratis Registry Key Primary Results

ATIS

9 % ^{p<0.001}

4%

.5%

II. STRATIS SYSTEM OF CARE OUTCOME; TRANSFER VS. DIRECT SYSTEMS OF CARE: DIRECT VS. TRANSFERE AND SHOULD WE BYPASS?

INTERHOSPITAL TRANSFER PRIOR TO THROMBECTOMY IS ASSOCIATED WITH DELAYED TREATMENT AND WORSE **OUTCOME IN THE STRATIS REGISTRY**

II. STRATIS SYSTEM OF CARE OUTCOME; TRANSFER VS. DIRECT DEMOGRAPHICS: DIRECT 539/984 (55%) TRANSFER 445/984 (45%)				
Characteristic	ALL (984)	Transfer (445)	Direct (539)	Ρ
Age, mean (SD), y	67.8 (14.7)	66.9 (14.6)	68.5 (14.8)	0.10
Atrial flutter/Atrial fibrillation	369 (37.5)	165 (37.1)	204 (37.8)	0.80
Systemic Hypertension	712 (72.4)	321 (72.1)	391 (72.5)	0.89
Diabetes mellitus	252 (25.6)	108 (24.3)	144 (26.7)	0.38
Hyperlipidemia	414 (42.1)	184 (41.3)	230 (42.7)	0.68
Current or former tobacco use	465 (47.3)	222 (49.9)	243 (45.1)	0.13
Baseline mRS 0	748 (76.0)	326 (73.3)	422 (78.3)	
Baseline mRS 1	209 (21.2)	104 (23.4)	105 (19.5)	
Initial Qualifying NIHSS Score,	17.3 (5.5),	18.0 (5.5),	16.7 (5.5) ,	<0.001
mean (SD), median (IQR)	17.0 (13-22)	18.0 <mark>(13-22)</mark>	17.0 (12-21)	
Baseline ASPECTS – per core lab*	N=763	N=306	N=457	
Mean (SD), median (IQR)	8.2±1.6, 8.0 (8-9)	7.9 (1.8), 8.0 (7-9)	8.4 (1.4), 9.0 (8-9)	<0.001
Treatment with IV-tPA, No. (%)	628 (63.8)	299 (67.2)	329 (61.0)	0.044

*Baseline imaging received for 835 pts, of which 72 were not evaluated for ASPECTS (38 Posterior stroke, 3 CT not available, 4 not evaluable), resulting in 763 pts evaluable for ASPECTS.

Stratis Registry Key Primary Results

Stroke Onset to 911 call

911 call to EMS Scene Arrival

EMS Scene Arrival to Door [Initial Hospital]

Door to Picture [Initial Hospital]

Picture to IV t-PA [Initial Hospital]

■ IV t-PA to Departure [Initial hospital]

Transfer time (Departure initial hospital to Door Enrolling Hospital)

EMS Scene Arrival to Door [Enrolling]

Door to Picture [Enrolling Hospital]

Picture to IV t-PA [Enrolling Hospital]

Picture to Puncture [Enrolling Hospital]

■ IV t-PA to Puncture [Enrolling Hospital]

Puncture to Revascularization [Enrolling]

II. STRATIS SYSTEM OF CARE OUTCOME; TRANSFER VS. DIRECT TIME DIFFERENCES FOR *MT ALONE*

- EMS Scene Arrival to Door [Initial Hospital]
- Transfer time (Departure initial hospital to EMS Scene Arrival to Door [Enrolling Hospital]
- Picture to Puncture [Enrolling Hospital]
- Puncture to Revascularization [Enrolling]

II. STRATIS SYSTEM OF CARE OUTCOME; TRANSFER VS. DIRECT MRS AT 90 DAYS

mRS 0-2:

- 60.0% direct
- 52.2% transfer
- OR 1.38 (1.06-1.79)

mRS 0-1:

- 47.4% direct
- 38.0% transfer
- OR 1.47 (1.13-1.92)

Mortality:

- 15.0% direct
- 13.7% transfer
- p=0.56

Shift analysis favored direct presentation (p=0.012 by Cochran-Mantel-Haenszel test).

-	6	15	

II. STRATIS SYSTEM OF CARE OUTCOME; TRANSFER VS. DIRECT TIME DELAY ACCOUNTS FOR DIFFERENCE IN OUTCOMES

Across all patients, the absolute rate of functional independence decreased by 5.5% per hour from alarm (911 call) to puncture.

II. STRATIS SYSTEM OF CARE OUTCOME; TRANSFER VS. DIRECT TIME DELAY ACCOUNTS FOR DIFFERENCE IN OUTCOMES: IV+MT VS MT ALONE (BLUE)

After accounting for differences in outcome related to time to endovascular treatment, the administration of IV-tPA did not have a significant effect on outcome, either overall or in interaction with time.

Stratis Registry Key Primary Results

Adjusted for age, baseline NIHSS, and occlusion location

II. STRATIS SYSTEM OF CARE OUTCOME; TRANSFER VS. DIRECT SHOULD WE BYPASS?

BYPASSING THE COMMUNITY HOSPITAL MAY REDUCE TIME TO MT, BUT MAY INCREASE TIME TO IV-TPA OR MISSING THE IVTPA DUE TO BYPASS PSC.

WE PERFORMED VIRTUAL BYPASS SIMULATION ROUTING TO CALCULATE EFFECT ON TIMES DELAY TO TREATMENT: IDEA, TO ASSUME THAT TRANSFER PATIENTS WOULD BY **PASS THE CLOSEST HOSPITAL:**

WHAT WOULD BE THE TIME DELAY TO IVTPA

HOW MANY WOULD MISS IVTPA

INCLUSION ON THE VIRTUAL MODEL FOR GROUND TRANSPORT ONLY. AIR TRANSPORT EXCLUDED GIVEN LONGER DISTANCES AND HIGHER VARIABILITY. BYPASS ANALYSIS PERFORMED FOR TWO SUBSETS: ALL TRANSPORTED VIA GROUND, AND ONLY THOSE WITHIN 20 MILES OF ENDOVASCULAR CENTER (TO SEE THE EFFECT ON SPECIFIC DISTANCE FROM EC)

STRATIS VIRTUAL BYPASS: 209 TRANSFERRED VIA GROUND ONSET TO PUCNCTURE IF BYPASS OCCURRED

All patients transferred via ground (n=209)=virtual population assuming bypassing

Stratis Registry Key Primary Results

*Calculated drive time = <u>Distance to EC</u> Actual Average Transport Velocity

II. STRATIS SYSTEM OF CARE OUTCOME; TRANSFER VS. DIRECT VIRTUAL BYPASS: DELAY IN TPA: 17 MIN, 6 NO TPA, DECREASE IN ONSET TO PUNCTURE: 81 MINUTES All patients transferred via ground (n=209, 122 w tPA) **VIRTUAL BYPASS IN STRATIS** Actual **FULL COHORT:** 106 Bypass Onset-to-tPA 123 6 no longer tPA eligible (5%) (Median time) 17 min IVTPA Delay 250

to 169 min)

169

100

Minutes

200

300

Stratis Registry Key Primary Results

Onset-to-puncture

(Median time)

 $\left(\right)$

GAIN: 81 min shorter Median Onset to Puncture time (250

VIRTUAL BYPASS IN STRATIS 20 miles radius to EC Yielded: \geq 2 no longer tPA eligible (3%) ➢GAIN: 92 min shorter Median Onset to Puncture time (240 to

II. STRATIS SYSTEM OF CARE OUTCOME; TRANSFER VS. DIRECT 3-5 % MISS TPA IF BYPASSED (ALL VS 20 MILES BYPASS)

- If tPA is missed due to bypassing nearer hospital in favor of direct routing to endovascular care, there is no predicted difference in outcome
- Outcome remains dependent on time-totreatment

III. STRATIS ADJUCNTIVE TECHNIQUE OUTCOMES

INFLUENCE OF BALLOON, CONVENTIONAL, OR DISTAL CATHETERS ON ANGIOGRAPHIC AND CLINICAL OUTCOMES IN THE STRATIS REGISTRY

III. STRATIS ADJUCNTIVE TECHNIQUE OUTCOMES METHODS

Objective	 To evaluate the influence of thrombectomy adjunctive devices/techniques on angiographic and clinical outcom STRATIS Registry: BGC+SR, DLBC with local or lesional a
Outcomes	 Modified First pass effect (FPE) defined as successful repersent ≥TICI2b after first device pass True FPE defined as TICI 2c or 3 after first pass Number of passes Rate of good clinical outcome defined as mRS 0-2 at 90 day
Independent Evaluation	 A Technique Core Lab blinded to clinical outcome extrapol techniques and assessed FPE and True FPE based on proce An Image Core Lab blinded to clinical outcome assessed fin reperfusion status.
Analysis Population	 Included anterior circulation target vessel occlusion Excluded subjects in whom combined BGC and DLBC appr

es from the aspiration, CGC

erfusion of

ys

lated the edural reports. nal angiographic

oach was used

III. STRATIS ADJUCNTIVE TECHNIQUE OUTCOMES INTERVENTIONAL TECHNIQUES

Technical approaches as assessed by the Technique Core Lab based on procedural reports

Stratis Registry Key Primary Results

CGC with BOTH lesional aspiration and retrieval with DLBC (n=72) CGC with lesional aspiration (DLBC) and proximal retrieval into CGC (n=229) CGC with DLBC with aspiration via CGC (n=1)

III. STRATIS ADJUCNTIVE TECHNIQUE OUTCOMES STUDY POPULATION & BASELINE CHARACTERISTICS

A total of 936 patients were included in the analysis.

Baseline characteristics were well balanced across groups with the exception of current or previous tobacco use.

Characteristic	BGC (503)	CGC (77)	DLBC (302)	P-value
Age (years)	67.7±15.22 (503)	68.8±14.66(77)	68.7±14.29 (302)	0.7943
Sex - Male	261/503 (51.9%)	43/77 (55.8%)	162/302 (53.6%)	0.7635
Medical History				
Atrial fibrillation	210/503 (41.7%)	26/77 (33.8%)	110/302 (36.4%)	0.1919
Hypertension	360/503 (71.6%)	58/77 (75.3%)	230/302 (76.2%)	0.3350
Diabetes mellitus	119/503 (23.7%)	14/77 (18.2%)	89/302 (29.5%)	0.0617
Current or previous tobacco use	260/503 (51.7%)	33/77 (42.9%)	127/302 (42.1%)	0.0203

Data are % (n/N), or mean±SD (N). The protocol was amended to restrict enrollment to mRS 0-1 to ensure consistency with SWIFT PRIME enrollment criteria.

III. STRATIS ADJUCNTIVE TECHNIQUE OUTCOMES

STUDY POPULATION & BASELINE CHARACTERISTICS, CONTINUED,

Characteristic	BGC (503, 54%)	CGC (77, 8%)	DLBC (3
Pre-Procedure			
Initial Qualifying NIHSS Score	17.1±5.34 (503)	17.5±5.73 (77)	17.5±5.
IV t-PA delivered	328/503 (65.2%)	51/77 (66.2%)	195/302
ASPECTS – per imaging core lab†	8.3±1.59 (415)	8.5±1.28 (66)	8.1±1.5
Intracranial Vessel treated on First Pass‡			
Internal Carotid Artery Terminus	105/503 (20.9%)	18/77 (23.4%)	89/302
Middle Cerebral Artery – First segment (M1)	300/503 (59.6%)	43/77 (55.8%)	164/302
Middle Cerebral Artery – Second segment (M2)	97/503 (19.3%)	16/77 (20.8%)	48/302
Middle Cerebral Artery – Third segment (M3)	1/503 (0.2%)	0	1/302

Data are % (n/N), or mean±SD (N). Abbreviations: ASPECTS, Alberta Stroke Program Early CT Score; mRS, modified Rankin Scale; mTICI, modified Thrombolysis in Cerebral Infarction; NIHSS, National Institutes of Health Stroke Scale. The protocol was amended to restrict enrollment to mRS 0-1 to ensure consistency with SWIFT PRIME enrollment criteria. †759 patients evaluable for ASPECTS. ‡Assessed by the Techniques Core Lab based on operative reports.

02, 32%) P-value

.50 (302) 2 (64.6%) 59 (235)

(29.5%) 2(54.3%) (15.9%) (0.3%) 0.7489 0.9489 0.0685 0.1967

III. STRATIS ADJUCNTIVE TECHNIQUE OUTCOMES DISTRIBUTION OF TECHNICAL APPROACHES USED ON 1ST PASS

III. STRATIS ADJUCNTIVE TECHNIQUE OUTCOMES PROCEDURAL OUTCOMES

- MEAN NUMBER OF DEVICE PASSES WAS SIGNIFICANTLY LOWER IN THE BGC GROUP WHEN COMPARED TO EITHER CGC OR DLBC GROUPS.
- MEAN TIME FROM PUNCTURE TO REVASCULARIZATION WAS SIGNIFICANTLY SHORTER **IN BOTH THE BGC AND DLBC GROUPS WHEN COMPARED TO THE CGC GROUP.**

III. STRATIS ADJUCNTIVE TECHNIQUE OUTCOMES REPERFUSION OUTCOMES: TFPE AND MFPE WERE SIGNIFICANTLY HIGHER WITH BGC, FINAL REVASC WAS NOT DIFFERENT

III. STRATIS ADJUCNTIVE TECHNIQUE OUTCOMES

III. STRATIS ADJUCNTIVE TECHNIQUE OUTCOMES GOOD CLINICAL OUTCOME: TECHNIQUE CORE LAB WAS BLINDED TO mRS

- MFPE AND TRUE FPE WERE SIGNIFICANTLY HIGHER IN THE BGC **GROUP WHEN COMPARED TO EITHER** THE CGC OR DLBC GROUPS.
- OVERALL: MFPE 60.3%, TRUE FPE 47.7%
- FINAL SUCCESSFUL REPERFUSION **RATES WERE SIMILAR AMONG THE GROUPS.**
- NO DIFFERENCES WERE OBSERVED IN **ENT, SICH OR ALL-CAUSE MORTALITY** RATES.
- **RATE OF GOOD CLINICAL OUTCOME WAS SIGNIFICANTLY HIGHER IN THE BGC GROUP WHEN COMPARED TO EITHER THE CGC OR DLBC GROUPS**

STRATIS CONCLUSIONS

- **STRATIS DOCUMENTS THAT THE TECHNICAL AND CLINICAL OUTCOMES OF THE LANDMARK** TRIALS USING THE SAME DEVICE CAN BE REPRODUCED IN A REAL-WORLD SETTING. DESPITE **ENROLLING A POPULATION WITH HIGHER MEAN BASELINE NIHSS AND MORE RISK FACTORS** THAN SEER, RESULTS DEMONSTRATE THAT MT WITH A MEDTRONIC STENT RETRIEVER IS **BOTH SAFE AND EFFECTIVE**
- THE SHORTER DOOR TO PUNCTURE INTERVALS IN STRATIS MAY SUGGEST AN INCREASING AWARENESS OF THE IMPORTANCE OF RAPID HOSPITAL WORKFLOW SINCE PUBLICATION OF THE SEER TRIALS.
- DIRECT PATIENTS IN STRATIS HAD BETTER CLINICAL OUTCOMES AND SHORTER ONSET TO PUNCTURE TIME VS. TRANSFER PTS. VIRTUAL BY PASS PROVIDED HIGHER GAIN IN SHORTENING ONSET PUNCTURE TIME WITH 3-5% LOSS OF TPA WITH LESS THBAN 17 MIN DELAY.
- DESPITE HAVING SIMILAR FINAL SUCCESSFUL RECANALIZATION RATES, BGC USE AS THE FIRST **APPROACH IN STRATIS DEMONSTRATED A HIGHER RATES OF FPE AND GOOD CLINICAL** OUTCOME AT 90 DAYS COMPARED TO CGC AND DLBC.

STRATIS ENROLLING SITES

Nils H. Mueller-Kronast, MD Advanced Neuroscience Network/Tenet South Florida	Rishi Gupta, MD WellStar Kennestone Regional Medical Ctr
Diogo C. Haussen, MD	Ashutosh P. Jadhav, MD
Grady Memorial Hospital	University of Pittsburgh Medical Center
Frank R. Hellinger, Jr., MD	Ameer E. Hassan, DO
Florida Hospital	Valley Baptist Medical Center
Dileep R. Yavagal, MD	Coleman O. Martin, MD
University of Miami Hospital	St. Luke's Hospital of Kansas City
Tom L. Yao, MD Norton Healthcare	Curtis A. Given, II, MD / Christian Ramsey, MD / Benjamin Newman, MD Baptist Health Lexington/Central Baptist

Geographic Distribution of Enrolling Hospitals

Hormozd Bozorgchami, MD	Thomas J. Grobelny, MD
Oregon Health and Science Univ Hosp	Advocate Christ Medical Center
M. Ali Aziz-Sultan, MD	Colin P. Derdeyn, MD / DeWitt Cross, M
Brigham and Women's Hospital	Barnes Jewish Hospital
Brijesh P. Mehta, MD	Aamir Badruddin, MD
South Broward Hospital	Presence St. Joseph Medical Center
Vivek Deshmukh, MD	Alex Abou-Chebl, MD
Providence St. Vincent Medical Ctr	Baptist Hospital Louisville
Sidney Starkman, MD	Clemens M. Schirmer, MD / Tarun Bhalla
University of California Los Angeles	Geisinger Clinic
Scott H. McPherson, MD	Gaurav Jindal, MD
St. Dominic's - Jackson Memorial Hosp	University of Maryland Med Center
M. Shazam Hussain, MD	Lucian Maidan, MD
Cleveland Clinic	Mercy San Juan Med Ctr/Mercy Gen.
Robert D. Ecker, MD	Rohan Chitale, MD
Maine Medical Center	Vanderbilt University Medical Center
Italo Linfante, MD	P. Roc Chen, MD
Baptist Hospital of Miami	Memorial Hermann Texas Med Ctr
Nirav Vora, MD	Travis M. Dumont, MD
OhioHealth Riverside Methodist Hosp	University of Arizona Med Center
Peter Kvamme, MD	Abdulnasser Alhajeri, MD
University of Tennessee Medical Ctr	University of Kentucky Hospital
Ike Thacker, MD	Akram Shhadeh, MD / Khaled Asi, MD
Baylor University Medical Center	Aurora Hospital, Milwaukee
Richard P. Klucznik, MD	Jeffrey Carpenter, MD
Methodist Hospital, Houston	West Virginia Univ/Ruby Memorial
Stephen J. Monteith, MD	Adnan H. Siddiqui, MD
Swedish Medical Center	Buffalo General Medical Center
Eric Sauvageau, MD	Alan Boulos, MD
Baptist Medical Center - Jacksonville	Albany Medical Center

	David F. Kallmes, MD Mayo Clinic, Rochester
)	Ajit S. Puri, MD / David Rex, MD University of Mass. Memorial Med Centr
	Eric M. Deshaies, MD Crouse Hospital
	Aniel Majjhoo, MD McLaren Flint
, MD	Osama O. Zaidat, MD Froedtert Hospital
	M. Asif Taqi, MD Los Robles Medical Center
	Peter Sunenshine, MD Banner University Medical Center
	Richard D. Fessler, MD St. John Providence Hospital, Detroit
	Shuichi Suzuki, MD University of California Irvine
	James Bartscher, MD / David H. Robinson, MD Virginia Mason Medical Center
	Blaise W. Baxter, MD Erlanger Medical Center
	Mouhammad A. Jumaa, MD ProMedica Toledo Hospital
	Josser E. Delgado Almandoz, MD Abbott Northwestern Hospital
	Jerry C. Martin, MD California Pacific Medical Center
	Joey D. English, MD Carolinas Medical Center

THANK YOU