

WLNC, Los Angeles/CA, USA, May 15-17, 2017

What is the best imaging protocol for LVO screening when outside of 0-6h window?

Jens Fiehler, MD, FESO fiehler@uke.de

Research support: EU, BMBF, BMWi, Microvention

Presentations: Bayer, Boehringer, Bracco, Codman, Penumbra, Sanofi, Siemens, Stryker

Consultancy: Acandis, Covidien/Medtronic, Medina, Microvention, Penumbra, Stryker, Sequent

"If you wish to converse with me, define your terms." said Voltaire, "

How many a debate would have been deflated into a paragraph if the disputants had dared to define their terms!

-Will Durant

Imaging based patient selection: Expectations for selected subjects

Good outcome

High complication rates, start therapy, new indication, limited MT ressources

High therapy effect

Some economic restrictions

Potential therapy effect

Low complication rate, training center, economic incentives

Where are you?

Modify expectations: Skills and infrastructure

The lucky few

High-end imaging 24/7/365 available Excellent interpretation skills 24/7/365 available

The majority

Mixed quality of CT/MRI equipment Always some new Radiologists

The wasteland

Old NE-CT, "CTA-resistance" Unfriendly radiologists, no interest in stroke

Where are you?

	Principles	The lucky few	The majority	The wasteland
Good outcome	Proximal occlusion	Proximal occlusion Small core	Eyeballing with little software support*	Eyeballing with more software support*
High therapy effect	Proximal occlusion	Proximal occlusion Medium core	Eyeballing only	Eyeballing only
Potential therapy effect	Any occlusion	Any occlusion Large core	Eyeballing only	Eyeballing only

Why recanalise a M1 occlusion?

acute

F/U Infarct

Full success! Infarct volume 18 cm³ mRS (90) 5→0 **"Sub radar success"** Infarct volume 124 cm³ mRS (90) **5→3** Futile recanalisation Infarct volume 402 cm³ mRS (90) 5→5

ASPECTS on tissue damage?

Menon, B et al. Neuroimag Clin N Am 2011;21: 407–23. Yoo YA et al. Stroke. 2012;43:1323-1330.

Ischemic core: lesions can grow for days

*74 y female, M1-occlusion, 2010, no recanalization because of "no mismatch"

#1: Ischemic core: lesions can grow for days

3h

*74 y female, Carotid-T-occlusion, 2002, IA tPA without recanalization

EROICAS (ESMINT, EANS, ESNR, ESO, EAN, EuSEM) Which <u>imaging selection</u> criteria?

- Occlusions of MCA (M1 or M2) and/or of the intracranial ICA should be diagnosed with non-invasive imaging possible before considering treatment is solve to be solve the intracranial ICA possible before considering treatment is solve to be solvet to be solve
- EVT can be consider stenosis of the ASPEC onere is an occlusion or tar, tar, and the the tar, and the pathology). (Quality of evic Aspectate, Strength of recommendation: strong).
- The additional benefit of advanced perfusion or collateral image processing for patient selection is not established and requires further study. (Quality of evidence: low, Strength of recommendation: strong).

MR Clean: ASPECTS vs. MT effect

HERMES*: Meta-Analysis of individual patient data

Confirmation from France: THRACE

Clinical

18–80 years, NIHSS score 10–25, IV tPA <3h (later <4h), MT start <5h

Imaging

CTA/MRA: occlusion of ICA, M1, superior third of basilar artery, cervical ICA occlusion excluded **No ASPECTS limit** +11%

RCT, 414 patients from 26 centres in France Duration: 06/10-02/15

Bracard, S et al. Lancet Neurol 2016 Oct;15(11):1138-1147. Epub 2016 Aug 23. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial.

EROICAS: Imaging criteria for thrombectomy

ASPECTS mentioned just under **"Additional information"**:

- The ASPECTS score has only moderate to good interobserver agreement in the hyperacute stroke setting.
- In patients with lower initial ASPECTS, the <u>location</u> of the hypodensity can be taken into consideration. No treatment interaction with ASPECTS has been demonstrated but ASPECTS 0-4 are barely represented in recent trials.
- Further RCTs in patients with ASPECTS 0-5 are warranted.

Ischemic core volume and outcome in MR Clean

Ischemic core volume and outcome in MR Clean

Borst J, et al. Stroke. 2015 Dec;46(12):3375-82.

Onset to treatment time vs. treatment effect

(sec)

(sec)

0 -

(sec)

50 -

0 _____ (ml/100 ml/min)

2 _

0 _____ (ml/100 ml) 4 –

0 _____ (sec)

Probability of mRS score of 0-2

Time from onset to recanalization

Probability of mRS score of 0-2

Probability of mRS score of 0-2

Time from onset to imaging

Time from imaging to recanalization

ESCAPE: only P2P counts ... ?

HERMES: Delay vs. mRS 0-2 (90 d)

		Endovascular Thromb	ectomy	Medical Therapy		P Value for Interaction With	
		OR (95% CI) per 1-Hour Delay	ARD, % (95% CI) per 1-Hour Delay ^a	OR (95% CI) per 1-Hour Delay	ARD, % (95% CI) per 1-Hour Delay ^a	Treatment Group	
	Symptom Onset-to-Reperfusion Time Interval (Expected) ^d						
	mRS shift ^b	0.87 (0.79 to 0.95)	-6.1	0.99 (0.90 to 1.09)	-0.4	.046	
	mRS 0-2	0.85 (0.77 to 0.95)	-4.0 (-6.4 to -1.3)	0.94 (0.83 to 1.06)	-1.2 (-3.5 to 1.2)	.25	
	ality	1.16 (1.01 to 1.32)	2.0 (0.1 to 4.0)	0.88 (0.76 to 1.02)	-1.9 (-3.9 to 0.5)	.048	
	tom Or	nset-to-ED Arrival Time	Interval			c	
	mRS shift ^b mRS 0-2	1.01 (0.93 to 1 1.00 (0.93 to 1	Absolute risk	reduction (p	er h): 0	1.5. .52 RE	
TA	ality	1.01 (0.88 to 1.16)	0.1 (-1.6 to 2.0)	0.90 (0.78 to 1.03)	-1.6 (-3.5 to 0.4)	.21	
A A	rrival-to	o-Reperfusion Time Inte	rval (Expected) ^f				
	mRS shift ^b	0.57 (0.48 to 0 67)	_16 7	0 05 (0 90 to 1 12)		<.001	
	mRS 0-2	0.56 (0.45 to C Ac	osolute risk re	eduction (pe	r h): 14% 🌗	.001	
	ality	0.91 (0.88 to 0.93)	-1.2 (-1.6 to -0.9)	1.06 (0.84 to 1.33)	0.9 (-2.5 to 4.8)	.02	
	100						

EROICAS: Which <u>clinical selection</u> criteria define candidates for additional thrombectomy compared to best medical therapy alone?

- Time from symptom onset to groin puncture should be preferably within 6 h. (Quality of evidence: high, Strength of recommendation: strong).
- Time from symptom onset to groin puncture should be no later than 12 h. Advanced imaging might help in identifying patients with potential benefit in the 6–12 h time window. (Quality of evidence: very low, Strength of recommendation: weak).
- Application of an upper age limit is not justified. (Quality of evidence: high, Strength of recommendation: strong).

DAWN study Presented at ESOC 05/2017 Proof of occlusion: mandatory

Define your terms: core is king Good outcome vs. therapy effect vs. avoid harm

Know your limitations: reading aids helpful?

Time is brain: but there is no limit "Good brain" is time invariant