

Advanced Imaging for Interventional Neurosurgery

Jason Cotham, RT(R) Rush University Medical Center Chicago, IL

Outline

- 2. Scan and injection protocols for 3D DSA and DynaCT
- 3. Reconstruction parameter and secondary reconstruction
- 4. Tools in *syngo* InSpace and the 3D card for advanced postprocessing
- 5. Introduction to *syngo* iFlow and *syngo* Virtual Stent

Outline

- 2. Scan and injection protocols for 3D DSA and DynaCT
- 3. Reconstruction parameter and secondary reconstruction
- 4. Tools in *syngo* InSpace and the 3D card for advanced postprocessing
- 5. Introduction to *syngo* iFlow and *syngo* Virtual Stent

- 1. Arterial Venus Malformations (AVM)
- 2. Subarachnoid Hemorrhage (SAH)
- 3. Stroke
- 4. Carotid Stenosis
- 5. Stent assisted aneurysm coiling

Arterial Venus Malformations (AVM)

AP and lateral VRT reconstruction showing massive right AVM

2D DSA AP and lat of massive right AVM

Arterial Venus Malformations (AVM)

Status after endovascular Onyx embolization and surgical removal of AVM

Subarachnoid Hemorrhage (SAH)

nCT demonstrating SAH 3D DSA showing basilar tip aneurysm

2D DSA before aneurysm coiling

Subarachnoid Hemorrhage (SAH)

AP and lateral 2D DSA view of coiled basilar tip aneurysm

CT Perfusion (CBV) demonstrating left MCA artifact

Stroke

RUSH UNIVERSITY MEDICAL CENTER

Stroke

Biplane DSA showing occlusion of left MCA

After mechanical thrombolysis treatment showing left ICA aneurysm

Carotid Stenosis

Pre-CTA of left internal carotid artery stenosis DSA run prior to stent placement Evaluation of stenosis using Quant

DSA run post stent

Stent/ Coiling of Aneurysm

3D DSA showing left ACA* aneurysm Post stent placement

Post stent placement and aneurysm coiling

* ACA: anterior communicating artery

Outline

- 2. Scan and injection protocols for 3D DSA and DynaCT
- 3. Reconstruction parameter and secondary reconstruction
- 4. Tools in *syngo* InSpace and the 3D card for advanced postprocessing
- 5. Introduction to *syngo* iFlow and *syngo* Virtual Stent

3D DSA protocols and indication

- 5sDSA: aneurysm, intracranial stenosis
- 10sDSA: AVM, tumor

Injection Protocol for 5sDSA:

- Flow rate: 3cc/ sec.
- Total volume: 21cc
- X-ray delay: 2 sec
- Contrast dilution: Full strength

Injection protocol for 10sDSA:

- Flow rate: 3cc/ sec.
- Total volume: 36cc
- X-ray delay: 2 sec
- Contrast dilution: Full strength

Total volume: Flow rate x (run time + X-ray delay)

Used DynaCT protocols and indication

- 20sDR (70kV): bleed
- 20sDR (109kV, reduces metal artifacts): stent follow-up

Injection Protocol for 20sDR Intrastent:

- Flow rate: 2cc/sec
- Total volume: 40cc
- X-ray delay: 2sec
- Contrast dilution: 20% (20cc contrast, 80cc saline)

Injection protocol for ivDynaCT:

- Flow rate: 4cc/sec
- Total volume: 80cc
- X-ray delay: 13sec
- Contrast dilution: full strength

- 2. Scan and injection protocols for 3D DSA and DynaCT
- 3. Reconstruction parameter and secondary reconstruction

Outline

- 4. Tools in *syngo* InSpace and the 3D card for advanced postprocessing
- 5. Introduction to *syngo* iFlow and *syngo* Virtual Stent

Reconstruction Numeric VOI									
Preset:									
Modified "Angio"	•								
VOI Size:	Manual 📃								
Slice Matrix:	512×512 💌								
Kernel Type:	EE 💌								
Image Characteristics:	Smooth 🔽								
Reconstruction Mode:									
Sub with MoCo	•								
Viewing Preset:									
AutoVasc	•								
Series Description:									
	Angio								
Sub MoCo EE Smooth [InSpace3D]									

Preset:

Defines all following parameters, specific for one application, e.g. DynaCT Head

VOI Size:

- Defines the size of the reconstruction
- Options: Small, medium, full

Slice Matrix:

- Should always be 512x512 for best resolution Kernel Type:
 - EE: Edge Enhancement, for 3D DSA only
 - HU: Hounsfield Unit, for DynaCT's

Image Characteristics:

- Similar to kernel in CT
- Options: very smooth, smooth, normal, sharp, auto
- If 3D DSA images are very noisy, use smooth
- For DynaCT use normal
- For stent visualization use sharp
- Auto often defaults on sharp

Reconstruction Numeric VOI									
Preset: Modified "Angio"		•							
VOI Size:	Manual	•							
Slice Matrix:	512×512	•							
Kernel Type:	EE	•							
Image Characteristics:	Smooth								
Reconstruction Mode:									
Sub with MoCo									
Viewing Preset:									
AutoVasc		•							
Series Description:									
	A	ngio							
Sub MoCo EE Smooth [InSpace3D]									

Reconstruction mode:

- Options: Sub, NatFill, NatMask, Sub with MoCo, Dual Volume, Dual Volume with MoCo
- Sub (with MoCo): Use for all 3D DSA
 - *Dual Volume (with MoCo):* Use for 3D DSA with metal implants, e.g. coils, clips to visualize metal in a different color
- *NatMask:* Use for 3D DSA to reconstruct only the non-contrast mask run
- NatFill: Use for 3D DSA to reconstruct CT like images

Viewing Preset:

 Defines how the reconstruction will be shown in InSpace, e.g. Golden for 3D DSA

Series Description:

Gives the reconstruction a name to be easily identified in the Patient Browser

VOI Sizes

Small VOI: For best resolution, e.g. stent, small vessels, bony structures
Medium VOI: Standard for 3D DSA
Large VOI: To include the entire scan field, e.g. AVM's or DynaCT's for
registration purposes

Slice Matrix

256 slice matrix

512 slice matrix

Image Characteristics

Smooth

Sharp

3D DSA with Motion Correction

Sub with MoCo 9:25:32

How to get there:

- Load e.g. 5sDSA into InSpace Reconstruction (*Patient -> Send* to 3D)
- 2. Under Reconstruction Mode select "Sub with MoCo"
- 3. Start reconstruction

NatFill recon of 3D DSA

Primary Reconstruction

Secondary Reconstruction

How to get there

- Load e.g. 10sDSA into InSpace Reconstruction (*Patient ->* Send to 3D)
- 2. Under *Reconstruction Mode* select "*NatFill*"
- 3. Start reconstruction

Reconstruction Preset Editor

Reconstruction Preset Editor

Preset	3D	VOI SI	Slice	Kern	Image	Auto	Auto	Recon	Viewin	Com	LFD	Dvn	Ves	3D/3D	Win	Win	Win	Win
Angio	1	Medium	512 ×	EE	Normal	Yes	Yes	Sub	AutoV	No	No	No	No	Rigid	1000	0	300	0
Aortic Valve Guide	28	Full	256 ×	HU	Normal	Yes	Yes	Nat Fill	Aortic	No	No	No	No	Rigid	1000	0	300	0
Bone	2	Full	512 x	HU	Auto	Yes	Yes	Nat Fill	Opaq	No	No	No	No	Rigid	1000	0	300	0
Cardiac Gated	5	Full	512 ×	HU	Normal	Yes	Yes	Nat Fill	Dyna	No	No	No	No	Rigid	1000	0	300	0
Cardiac Ungated	6	Full	256 ×	HU	Normal	Yes	Yes	Nat Fill	Dyna	No	No	No	No	Rigid	1000	0	300	0
Dual Volume	3	Medium	512 ×	EE	Normal	Yes	Yes	Dual V	AutoD	No	No	No	No	Rigid	1000	0	300	0
DynaCT Body	7	Full	512 ×	HU	Normal	Yes	Yes	Nat Fill	AutoD	No	No	No	No	Rigid	330	60	1500	550
DynaCT Head	4	Full	512 ×	HU	Normal	Yes	Yes	Nat Fill	Dyna	No	Yes	No	No	Rigid	330	60	1500	550
DynaCT Head Clear	31	Full	512 x	HU	Normal	Yes	Yes	Nat Fill	Dyna	No	Yes	Yes	No	Rigid	330	60	1500	550
iGuide_Bone	8	Full	512 ×	HU	Normal	Yes	Yes	Nat Fill	iGuide	No	No	No	No	Rigid	2800	900	1000	0
iGuide_SoftTissue	9	Full	512 ×	HU	Normal	Yes	Yes	Nat Fill	iGuide	No	No	No	No	Rigid	350	80	1000	0
Liver-PBV	27	Full	512 ×	HU	Smooth	Yes	Yes	Dual	Liver	No	No	No	No	Flexible	100	200	550	1550
Neuro-PBV w/ vasc	25	Full	512 ×	HU	Smooth	Yes	Yes	Dual	Neuro	No	No	No	No	Rigid	62	29	550	1550
Neuro-PBV w/o vasc	26	Eull	512 y	ΗЦ	Smooth	Yes	Yes	Dual	Neuro	No	No	No	Yes	Rigid	62	29	550	1550
SAH/BLEED	10	Medium	512 ×	EE	VeryS	Yes	Yes	Sub	Dyna	No	Yes	Yes	No	Rigid	1000	0	300	0
STEALTH_SKIN	11	Full	012 X	HU	Smooth	Yes	Yes	Nat Fill	Dyna	No	No	Yes	No	Rigid	2500	570	300	0
STEALTH_Sub	12	Full	512 ×	EE	Normal	Yes	Yes	Sub	AutoG	No	No	No	No	Rigid	1000	0	300	0
Stent Follow-Up	29	Small	512 ×	EE	Sharp	Yes	Yes	Nat Fill	DCT	No	Yes	Yes	No	Rigid	1000	0	300	0
				_						_		_	_		_	_	_	
Overall Default Preset Stent Follow-Up 💌 DynaCT Recon: Stent Follow-Up 💌																		
		-	1 -		- 1	-												
New Entry Delete Entry Edit Entry Cancel						Save								H	Help			

- Each preset is linked to a protocol on the Artis
- Stores all reconstruction parameters specific to each protocol
- Create custom secondary reconstructions (e.g. SAH/BLEED using a VerySmooth image characteristic)

Outline

- 2. Scan and injection protocols for 3D DSA and DynaCT
- 3. Reconstruction parameter and secondary reconstruction
- 4. Tools in *syngo* InSpace and the 3D card for advanced postprocessing
- 5. Introduction to *syngo* iFlow and *syngo* Virtual Stent

Post processing for 3D DSA (diagnostic)

Default AP view

Anterior oblique view

Left oblique view

Embedded MPR in ruptured aneurysms

Patient Applications InSpace Show Mode View Orientation Tools Measure Volumes Options Help

3D Roadmap

RUSH UNIVERSITY MEDICAL CENTER

- Optimal treatment projection of ICA bifurcation aneurysm
- Click on *iPilot Dynamic* to overlay this view to live fluoro on the workstation monitor

Guidewire

Stent microcatheter

Coiled aneurysm

3D/3D Registration with MRA/ DynaCT

- MRA (3D TOF*) to visualize the aneurysm
- 5sDR non-contrast for registration
- Load both to InSpace, click on Fusion

* TOF: Time of Flight

3D/3D Registration with MRA/ DynaCT

- Align both datasets, click on *auto*, *Pre-aligned*, *Register*
- Check registration, then save Registration Matrix
- Close patient data and load only the MR dataset in InSpace
- Click on iPilot Dynamic to overlay

3D/3D Registration with MRA/ DynaCT

- MRA (3D TOF) to visualize the aneurysm
- 5sDR non-contrast for registration

Optional: In the *iPilot Dynamic* window select *Invert Gray Scale* and change the MR preset

- Perform 2nd reconstruction with small VOI, centered on the area of interest (e.g. stent, flow diverter)
- Create individual images to best visualize the device and its relation to bone or other vessels

Curved MRP/ MIP

Load dataset to 3D card and change to thin MIP and adjust window settings

Rotate until area of interest is in profile

Select the *Curved Mode* icon and draw a line, following the course of the vessel, end with a double click, the result will be shown on the 2nd monitor

- Select Parallel Ranges icon, position the centerline on the stent and tilt the ranges to follow the vessel
- Adjust parameter so that Image thickness = Distance between slices
- Deselect Keep number of images constant and adjust the range to cover the area of interest
- Start and save the range after reconstruction

Results of 3D post processing

Outline

- 2. Scan and injection protocols for 3D DSA and DynaCT
- 3. Reconstruction parameter and secondary reconstruction
- 4. Tools in *syngo* InSpace and the 3D card for advanced postprocessing
- 5. Introduction to *syngo* iFlow and *syngo* Virtual Stent

syngo iFlow – Intro & Workflow

- Provides a single composite image that shows the history of the contrast medium movement through the vessel in time in a colored image
- Required images: 2D DSA acquisitions with positive contrast (iodine)
- Load 2D DSA images in Angio taskcard
- Select *iFlow* icon on *Image* tab card
- To compare 2 runs, e.g. pre and post flow diverter placement, make sure that Starting time and Duration is the same for both runs
- Place the cursor over the image to see the time of maximum contrast, click to set a marker
- To make ROI measurements click on Total Contrast ROI selection icon and place a circular, rectangular or freehand ROI

syngo iFlow – pre/ post flow diverter

Giant aneurysm in left ICA

Pre flow diverter placement

Post flow diverter placement

Contrast enhancement in aneurysm is clearly delayed after FD placement

- Allows precise stent planning in complex cases
- Results can be overlaid to live fluoro for guidance during stent deployment

syngo Virtual Stent – Step 1 & 2

Perform 2nd recon with small VOI for best image quality

VOI Punching to delete all vessel around the area of interest

syngo Virtual Stent – Step 3 & 4

Select AX Vessel Analysis icon on Measure tab card

Make sure that VOI is centered on aneurysm (blue dot) and click *OK*

syngo Virtual Stent – Step 5 & 6

Click on Aneurysm Analysis

Click inside the aneurysm, than proximal and distal, click *OK*

syngo Virtual Stent – Step 7 & 8

Check centerline + aneurysm measurement, click on *Virtual Stent*

Change stent length and position, click on iPilot to overlay to fluoro

