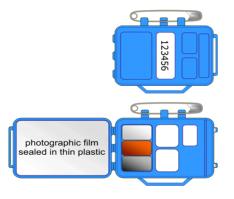
Advanced Imaging: Techniques and Tricks

A Basic Review of Radiation Safety

Anna Kisielente RT(R), ARRT. RUMC, Chicago.

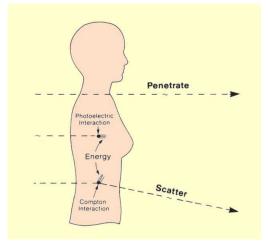
Occupational Dose Measurement

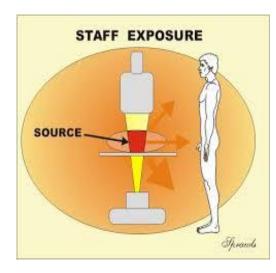


- The International unit for human exposure is measured in the Sievert (Sv).
- Factors the relative biological effectiveness (RBE) of ionizing radiation (x-rays, gamma rays, and neutrons) and exposed tissues.
- Represents the stochastic (cancer causing) health effects of ionizing radiation.
- Radiation exposure in the U.S. is measured in **rem** (radiation equivalent man).
- 1 rem= 10 mSv

How is radiation dose monitored?

- Dosimeter- external radiation monitoring device.
- Used to detect gamma and x-rays.
- Film badges- comprised of film with emulsion and a casing (plastic or metal) to protect the film.
- Total Effective Dose: Dosimeter placed at the level of the thyroid.
- Deep Effective Dose: Dosimeter placed at the level of the hip.




US Occupational Dose Limits

- Joint Committee on Administration Rules Section 340.210
- Annual Limits set to ensure proper health and safety of occupational radiation workers.
- Total Effective Dose equivalent of 0.05 Sv (5 rem).
- Deep Dose equivalent and the committed dose equivalent to any individual organ or tissue equal to 0.05 Sv (50 rem).
- Lens Dose equivalent of 0.15 Sv (15 rem).
- Shallow Dose (skin or extremities) equivalent of 0.5 Sv (50 rem).
- Dosimeter readings are given in mrem (1/1000 rem).

Scatter Radiation

- Considered a type of secondary radiation.
- Radiation that has passed through a substance (patient), then has changed direction.
- X-ray photons engage in Compton interactions and produce scatter radiation.
- Scatter radiation is the primary source of occupational exposure.

Angiographic Radiation Protection

WEAR A LEAD GARMENT

WEAR LEAD GOGGLES

Operator Protection

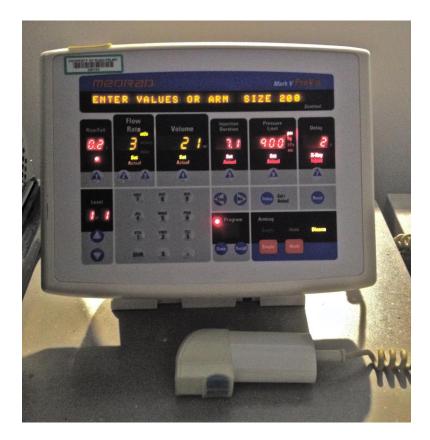
UPPER BODY PROTECTION

 Hanging ceiling mounted lead shielding provides protection for the torso and eyes.

LOWER BODY PROTECTION

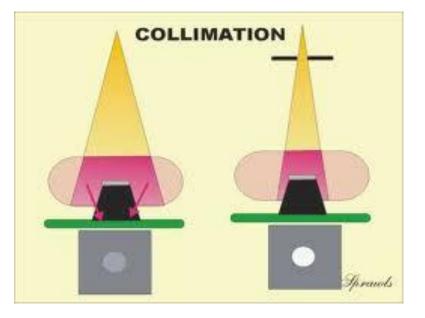
 Side rail shielding, attached to the angiographic table provides lower body protection.

The combination of upper and lower body radiation shielding provides a 99% reduction in scatter radiation exposure to the operator.


Incorporate Additional Lead Shielding

- Mobile "rolling lead" lead may be used to provide additional radiation scatter protection to the operator.
- Sterilely prepare the lead shield with fluoroscopic covers to ensure the mobility of unit during surgery.
- The mobile unit should be situated next to the detector of the second x-ray plane.
- Provides additional upper and lower body scatter radiation protection.

Pressure Injector



- Reduces occupational radiation exposure.
- Situated in the control room of angiographic suite.
- Allows for angiographic imaging without occupational exposure to radiation.
- Allows for better control of contrast injection verses "handruns".
- Especially useful in 3D, 4D, DSA, and high-speed DSA acquisitions.

Beam Collimation

- Collimate the x-ray beam to the tightest possible window.
- Avoid irradiating unnecessary tissue located outside of the region of interest.
- Reduces scatter radiation and image noise.

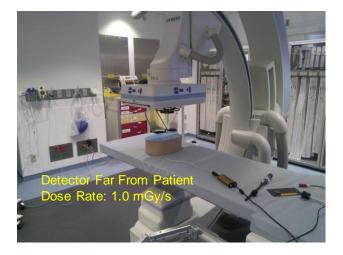


Image Detector Placement

RAISED DETECTOR

 Non-lowered image detector height contributes to increased patient exposure.

LOWERED DETECTOR

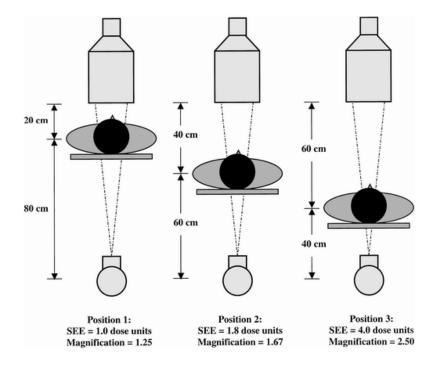
- Lowering the image detector directly reduces patient dose rate.
- A reduction of 0.25 mGy/s was observed in phantom testing.

Procedure Table Placement

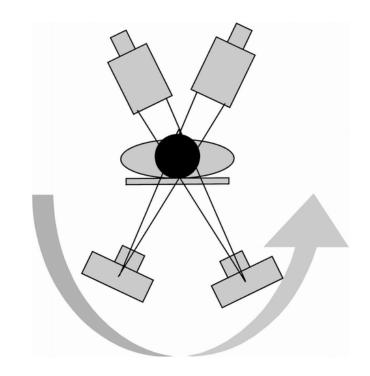
TUBE CLOSE TO PATIENT

 Directly related to increased patient dose.

TUBE FAR FROM PATIENT



 Move the patient as far from the tube as possible.


TABLE HEIGHT

Raise the table as close to the image detector as possible.

ROTATE TUBE

Dose spreading.

Adjustable Fluro Rates

- Standard and Low-Dose Protocols.
- Low acquisition rates.
- Increasing pulse rate, increases patient and operator exposure.

Advanced Imaging Updates

Techniques and Tricks

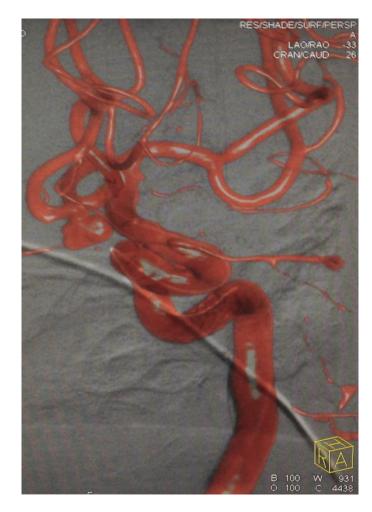
Siemens Syngo Inspace 3D

- High-contrast 3D angiography.
- 5sDSA acquisition.
- 3 mL/s for 21mL, 2 second XR delay.
- Volume Rendered Technique (VRT).
- Maximum Intensity Projections (MIP).

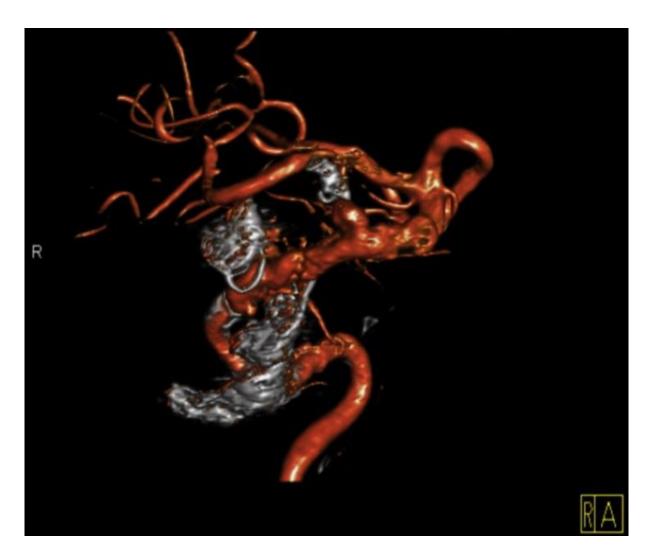
Post-Processing of 3D Acquisitions

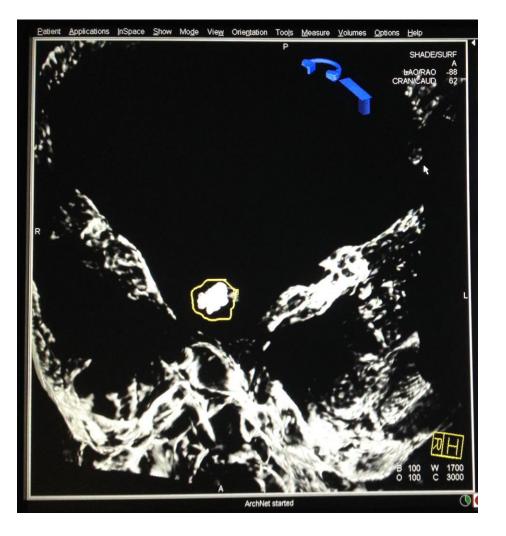
- Post reconstruction: Inspace reconstruction of initial acquisition (image).
- Parameters: Medium VOI, 512x512 matrix size, Kernel: HU, Image Characteristics: Sharp, Reconstruction Mode: Natural Mask.
- Press reconstruction icon (large box with calculator).
- Display VRT onto monitor for visualization.

Siemens Syngo iPilot



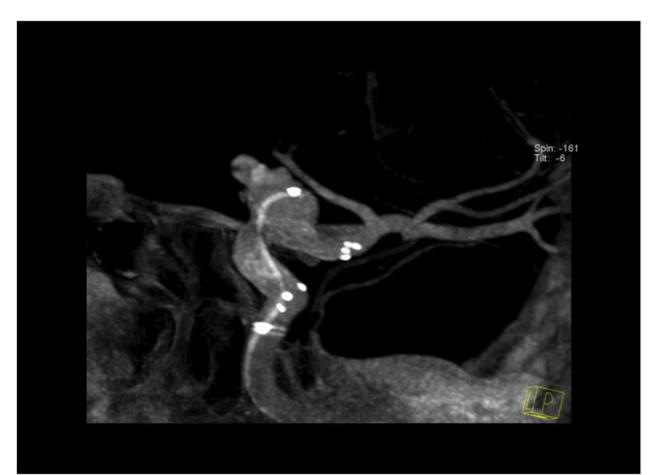
- 3D dynamic overlay.
- Adjustable vessel contrast windowing.
- Allows for visualization of microcatheters, coils, wires, and stents.
- Potential decrease in patient dose, contrast, and examination length.


2D Vs. 3D Roadmap


Dual Volume

- 3D visualization of metallic implants and vasculature.
- 5sDSA Dual Volume acquisition.
- 3 mL/s for 21 mL, 2s XR delay.
- Requires additional post-processing.

Dual Volume Post Processing


- Parameters: Medium VOI, 512x512 matrix size, Kernel: EE, Image Characteristics: Auto/Smooth, Reconstruction Mode: Sub with MoCo.
- Press reconstruction icon (large box with calculator).
- Close reconstruction, open patient browser, drag and drop in both volumes into Inspace (Sub with Moco and Nat Mask).
- Load merged, change preset to AX AX AutoDualVolume.

Dual Volume Syngo iPilot Dynamic Overlay

Dyna CT- Intrastent

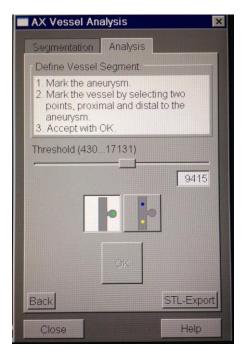
- 20s DR- small or medium VOI.
- Low-contrast injection- 20% dilution.
- 2mL/s for 40mL, 2s XR delay.
- Post processing: thin MIP's.

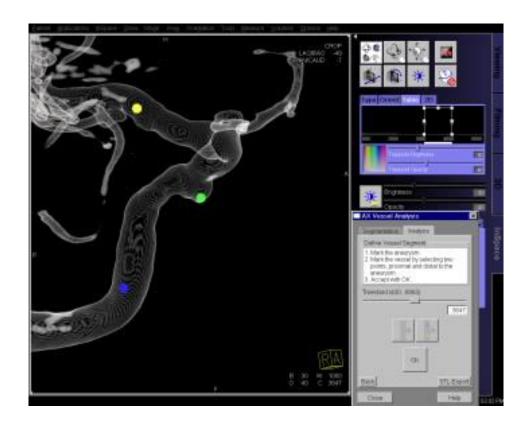
DynaCT- iPilot Overlay

- Non-contrast DynaCT.
- 20 second DR with a small VOI.
- Performed post-stent deployment.
- After post processing, image is overlaid onto live fluro.

DynaCT VOI	DR Overview 3 f/s	20sDR-VOI medium	20sDR-VOI small	
				and the second se

Siemens Vessel Analysis



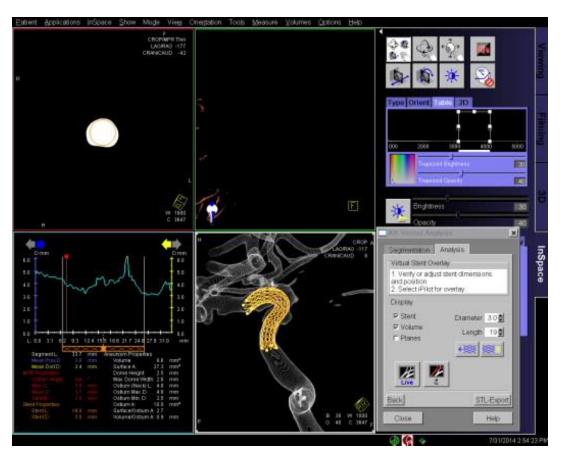

- Load 3D DSA into Inspace.
- Select AX Vessel Analysis (Measure tab).
- Asses stent sizes, vessel diameter, aneurysm neck and length.
- Position for seed point placement.
- Select VOI.
- Select OK.

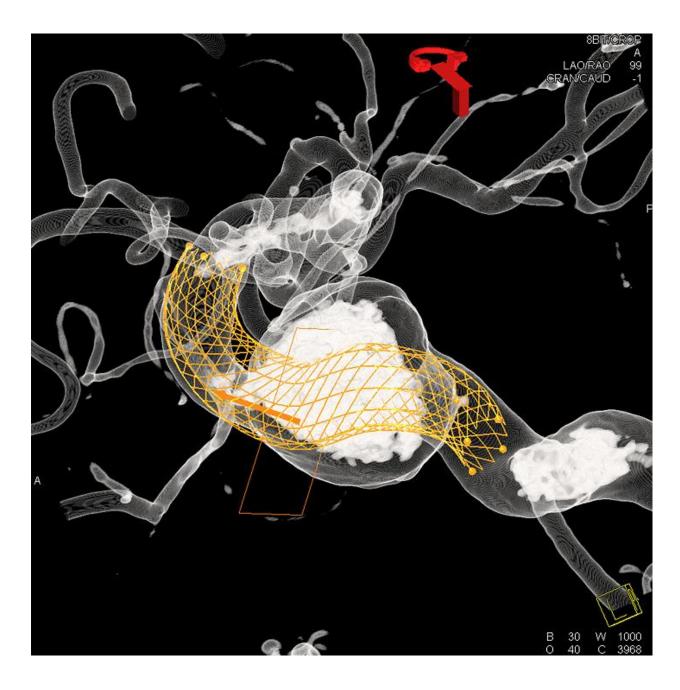
Seed Point Placement

Enable stenosis analysis.

The workstation automatically segments the vessel after selecting the proper seed points.

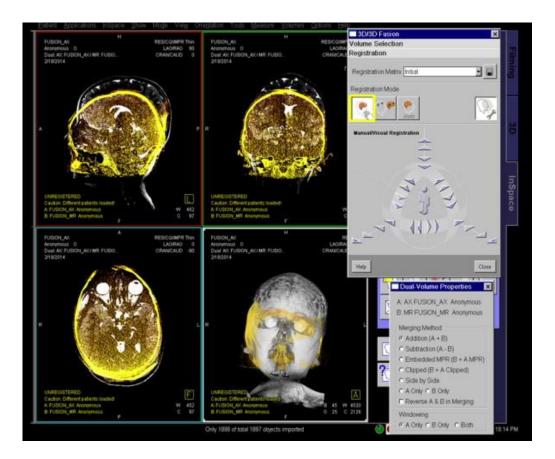
Layout of Vessel Analysis Tool




- Top Left: In-plane vessel dimensions (red plane).
- Top Right: Volume rendered endoluminal view (red plane).
- Bottom Left: Vessel and aneurysm dimensions. The red line indicates the position along centerline.
- Bottom Right: Volume rendered vessel, centerline, and aneurysm volume.

Virtual Stent

- Top Left: In-plane position of stent (red plane).
- Top Right: Volume rendered endoluminal view (red plane).
- Bottom Left: Vessel and aneurysm dimension along the centerline between points.
- Bottom Right: Volume rendered virtual stent.



3D/3D Fusion- iPilot Overlay

- Load CT, MRI, or previous DynaCt (3D volume). Clip around the area on interest- then bookmark.
- Perform 5sDR or 5sDR-LD with patient on the table. Unload 5sDR reconstruction from workstation.
- Load CT, MR, Dyna CT volume into Inspace tab, then open additional volume (5sDR).
- Select 3D/3D fusion (tools tab), align datasets, click on Auto, then pre-aligned, select register (image). Save registration, close all windows.
- Load original study (CT, MR, Dyna CT) and apply bookmark.
- Select iPilot Dynamic to overlay fusion onto workstation.

