

Neuro Labs and Best Practices in Stroke Programs

Sarah L. Livesay, DNP, RN, ACNP-BC Associate Professor Rush University College of Nursing

- Discuss the evolving best practices for neuro lab practice in published literature and clinical practice
- Review areas of significant practice variation between endovascular labs across the country and discuss opportunities for improved process and care

State of the Science

- Medline search
 - Neuroradiology = 17138
 - Neuroradiology AND nursing = 22
 - Neuroradiology AND tech(nologist) = 3
 - Neurointervenetion(al) = 539
 - Neurointervention(al) AND nursing = 5
 - Neurointerventional AND Tech(nologist) = 1
 - Neuroendovascular = 446
 - Neuroendovascular AND nursing = 3
 - Neuroendovascular AND tech(nologist) = 0
 - Similar findings for other search terms including team, room standards, etc.

- Neuro lab interdisciplinary team, roles and responsibilities
- Preparing for the worst case scenario
- Patient monitoring, sedation, and management
- Case documentation
- The perioperative experience: before and after the lab
- Patient handoff

Roles & Responsibilities

- Current practice
 - Room nurse
 - 1-2 technologists
 - Scrub
 - Technology and datafocused
 - Anesthesia
 - Proceduralist
 - Fellow/trainee
 - Blended lab with cardiac cath versus separate departments

Room Roles & Responsibilities

- Opportunities
 - Clarity of roles and responsibilities
 - Understaffing of neuro labs
 - Management of technology and data
 - When separate department from cardiac cath lab, clear communication and evaluation of intraprocedural best practices
 - Mechanical endovascular reperfusion
 - Carotid stenting

Room Roles & Responsibilities

The neurointerventional procedure room of the future: predicting likely innovations in design and function

Alexander Norbash,¹ Lloyd W Klein,² James Goldstein,³ David Haines,³ Stephen Balter,⁴ Lynne Fairobent,⁵ Donald L Miller,⁶ on behalf of the members of the Multispecialty Occupational Health Group

Concepts highlighted: Merging Innovation & Technology

- ✓ Multiple transparent control areas
- ✓ Apronless worker protection
- ✓ Integrative monitors & robotic intermediaries
- ✓ Differentiation between datastream and scrub technologist
- ✓ Integration and coordination of multiple datastreams
- Improved quality and reporting monitoring, measuring, and exporting

①RUSH

Worst Case Scenarios

- Current practice
 - Variability in the field regarding planning for the worst case scenario
- Managing intra-procedural complications
 - Best practices
 - Clearly outlined roles and responsibilities for complications including
 - Vessel dissection/rupture
 - Intracranial hemorrhage
 - Air emboli
 - Coil prolapse
 - Thromboembolic complications

- Best practices
 - Mobilizing neurosurgery for placement of external ventricular drain
 - Converting to an open procedure
 - Use of checklists and other tools to anticipate needs and roles

Worst Case Scenarios – Success Strategies

- Thromboembolic events
 - Incidence reported 2-61%
 - Higher with carotid artery stenting
 - Prevention
 - Antiplatelet medication
 - Rescue therapies
 - Lack uniform guidelines
 - Intra-procedure administration of glycoprotein IIb-IIIa inhibitors
- Air embolism
 - Formal reconfirmation of all flush systems as a part of safety checklist prior to procedure

- Intraoperative rupture
 - Reports range from 1-9%
 - Associated with increased morbidity and mortality
 - Higher risk with small aneurysm, recent rupture, presence of daughter sac
 - Periprocedural rescue
 - Attempt to repair leakage according to procedure (eg. Complete coil placement, inject embolization material)
 - Placement of EVD
 - Management of acute elevated ICP intra-op
- Best practice
 - Preparing for the event
 - Checklist including roles and responsibilities

Worst Case Scenarios – Success Strategies

CRUSH

 Mayo Clinic Checklist in the event of vessel perforation during coil embolization of aneurysm

IDENTIFICATION OF PERFORATION

🔿 wire/coil beyond aneurysm edge

- O Alert Anesthesia about perforation
- O Do not retract wire/catheter/coil
- Perform angiography to look for extravasation
- O Look at transit time
- Consider CT now/after

CLINICAL EXAM

O Pupil status
 O Glasgow Coma Scale
 O Blood Pressure Change
 O Focal neurologic deficit
 O Agitation

MEDICAL MANAGEMENT

- O Blood pressure modulation
- Administer protamin if patient on anticoagulation
- O Consider Mannitol
- Consider Pentobarbital

ENDOVASCULAR MANAGEMENT

- O Consider second microcatheter
- O Consider balloon inflation
- O Continue with packing of aneurysm

CLOSING UP

- ◯ Inform ICU
- O Inform Neurosurgery
- O Consider EVD/Craniotomy

Fig 1. Checklist for aneurysm perforation during coiling. ICU indicates intensive care unit; EVD, external ventricular drain.

Overall goals 1. Hemostasis

Manage increased intracranial pressure

Neurointerventionalist

- 1. Reverse antithrombotics
 - a. Protamine
- 2. Complete aneurysm embolization
- Monitor and treat increased intracranial pressure

 Monitor transit time, hemodynamics and need for ventriculostomy
- 4. Disposition
- a. DynaCT
- 1. Ventricular drain
 - 2. Operating room for hematoma evacuation

Anesthesiology

1. Page attending

- 2. ABCs
 - a. Secure airway and ventilate with 100% $\ensuremath{0_2}$
- 3. Antithrombotic reversal at neurointerventionalist direction
 - a. For heparin reversal, protamine bolus 10 mg per 1000 U of heparin
 - b. Monitor for cardiopulmonary reaction
- c. For aspirin and clopidogrel reversal, 5 single units of platelets and a 0.3 mg/kg intravenous bolus of desmopressin
- Hemodynamic control
- Blood pressure goal, systolic blood pressure <120, often use intravenous nicardipine
- 5. ICP monitoring and management
- a. Use transducer, clinical or radiographic signs
- b. Control intracranial pressure
- 1. Hyperventilate patient 2. Mannitol 0.5 g/kg, rapid intravenous infusion
- Neuroprotection
- 4. Passive cooling to 33-34°C

Nursing

- 1. Monitor and manage increased intracranial pressure
 - a. Observe CSF color change
 - b. Monitor hemodynamic changes for Cushing reflex
 - c. Prepare external ventricular drain
 - d. Page neurosurgery resident if necessary
- 2. Prepare medications
 - a. Mannitol
 - b. Protamine
 - c. Nicardipine
 - d. Anticonvulsant

Technologist

- 1. Assist with hemostasis
- a. Make coils rapidly available
- Prepare to open compliant balloons or n-butyl cyanoacrylate if necessary
- 2. Imaging
- a. Prepare for possible DynaCT
- b. Call CT tech about possible emergent scan

Box 2 Thromboembolic complication checklist

Overall goals

- 1. Thrombolysis
 - a. Optimize anticoagulation with heparin
 b. Thrombolysis
 - D. Inrombolysis
- 2. Optimize distal perfusion a. Blood pressure goals

Neurointerventionalist

- 1. Determine clinical significance of lesion
- a. Check for neuromonitoring changes
- b. Evaluate collateral angiographic flow
- 2. Check guide catheter for flow limiting vasospasm
- 3. Complete embolization of ruptured aneurysm
- 4. Superselective intra-arterial abciximab
- a. 2 mg boluses up to 10 mg.
- 5. Prepare to use aspiration devices
- 6. Endpoint
 - a. Angiographic recanalization
 - b. Maximum abciximab
 - c. Neuromonitoring changes or improved collaterals.

Anesthesiology

- 1. Hypervolemia, use normal saline
- 2. Optimize collateral cerebral perfusion

Nurse

- 1. Anticoagulation
- a. Give heparin if activated clotting time <250 s
- 2. Antiplatelets
- a. Abciximab, intra-arterially, 2 mg boluses up to 10 mg.
- 3. Vasospasm
 - a. Verapamil or nicardipine

Technologist

- 1. Thrombolysis
 - a. Prepare stroke aspiration devices
 - b. Record complication onset time
- c. Observe for angiographic changes

CRUSH

Additional published checklists for emergencies in the endovascular suite

Chen, M. 2013. A checklist for cerebral a neurys membolization complications. J Neurointerventional Surgery, 5, 20-27

Patient Monitoring

- Current practice: variation in monitoring practices for
 - Pre and post procedure neurologic and vascular status
 - Anesthesia and conscious sedation
 - Vital signs throughout at defined intervals
 - Medications administered
 - Who is monitoring neuro devices such as EVD & licox
 - Monitoring and documentation of ICP, drain status, output, interventions
- Best practice: organizing roles, responsibilities and documentation

Case Documentation

- Current practice
 - Significant variability regarding intra-procedural documentation of events and post-procedural documentation by MD performing procedure
 - Need for standardization in the field
- Best practice
 - Clear criteria for required intra-procedural documentation at your facility until national guidelines are published

The Perioperative Experience

- Current practice
 - Practice variability between centers regarding groin closure practices
 - Opportunities for improved handoff between caregivers during perioperative care
 - Emergency department, stroke, anesthesia, neuroradiologist, ICU team
 - Incomplete medical record due to incomplete or absent procedure reports
- Best practice
 - Groin closure according to evidence based publications
 - Checklists and documentation of significant events and goals of care during handoff
 - Auditing documentation for completeness

- Significant practice variation in neuro labs across the country and lack of solid evidence for improvement
- Opportunity to measure outcomes and publish on a number of best practices
- Periprocedural team communication and clear roles and responsibilities, particularly during emergencies, is a hallmark of superior neuro labs across the nation

RUSH

• Sarah L Livesay@rush.edu