Should TRI be considered to reduce the risk of stroke?

Impact of Arterial Access sites On the risk of stroke

> Martial Hamon, MD, FESC Cardiology, CHU, Caen Normandy, France

Disclosures

- Research grants: MSD, GSK, TMC, Lilly.
- Consultant: Terumo, Cordis

Impact of Arterial Access sites On the risk of stroke

Stroke in Cadiac Catheterization: PCI subgroup analysis

0.2 to 0.4% & independent risk factors: Age, Atheroma extension, EF, ACS...

First Author	Patients &	Incidence of Stroke In-hospital & postdischarge		Independent Predictors of Stroke OR and 95% Cl Bradictive verichles		
	Fup	N	%	95% CI	Predictive variables	
Lazar et al (1995)	6,465 in-hospital	Total27Ischemic_Hemorrhagic_Uncertain_	0.42% _ _ _	[0.27-0.60] _ _ _	Female gender Vascular disease Extensive CAD Ejection fraction LVH	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Akkerhuis et al (2001)	8,555 30 days	Total31Ischemic19Hemorrhagic12Uncertain1	036% 0.22% 0.14% 0.01%	6 [0.24-0.51] [0.13-0.34] 6 [0.07-0.24] 6 [0.00-0.06]	Advanced age Hypertension PAD	NA p < 0.001 2.9 [1.2-7.4] p = 0.01 2.2 [0.7-6.1] p = 0.08
Fuchs et al (2002)	9,662 in-hospital	Total43Ischemic21Hemorrhagic20Uncertain2	0.44% 0.22% 0.21% 0.02%	[0.32-0.60] [0.13-0.33] [0.13-0.32] [0.00-0.07]	IABP , emergency use IABP, prohylactic use Age>80 years Vein graft intervention	9.6 $[3.9-23.9]$ p < 0.001
Dukkipati et al (2004)	20,679 in-hospital	Total 92 Ischemic 43 Hemorrhagic 13 Uncertain 30	2 0.44% 3 0.21% 5 0.06% 5 0.17%	6 [0.36-0.54] 6 [0.15-0.28] 6 [0.03-0.10] 6 [0.12-0.24]	Diabetes Hypertension Prior stroke Renal failure Urgent procedures IABP	1.8 $[1.1-3.0]$ $p = 0.013$ 1.9 $[1.1-1.3]$ $p = 0.033$ 2.3 $[1.3-4.0]$ $p < 0.006$ 3.1 $[1.8-5.2]$ $p < 0.0001$ 2.7 $[1.3-5.5]$ $p < 0.009$ 2.2 $[1.1-4.3]$ $p = 0.028$
Wong et al (2005)	76,903 in-hospital	Total 140 Ischemic _ Hemorrhagic _ Uncertain _) 0.18% _ _ _	[0.15-0.21] _ _ _	Age GPI AMI Carotid disease Renal failure Heart failure IABP	1.0 $[1.0-1.1]$ $p < 0.001$ 1.5 $[1.0-2.1]$ $p = 0.027$ 3.4 $[2.6-5.8]$ $p < 0.001$ 3.4 $[2.1-5.4]$ $p < 0.001$ 2.0 $[1.0-3.9]$ $p = 0.037$ 2.9 $[1.9-4.4]$ $p < 0.001$ 3.5 $[1.5-8.3]$ $p = 0.004$

Mortality in patients with peri-procedural stroke in PCI

9.95 [95% CI: 5.73 to 17.27]

Hamon M. et al Circulation 2008

Cerebrovascular accidents after diagnostic and interventional cardiac catheterization

Mechanisms of cerebrovascular accidents

Embolism of athero-thrombotic material (causes & preventive actions)

- Catheters (during procedure) (appropriate heparinization/flushing)
- Left ventricle (mural thrombus post MI) (Echo/avoiding ventriculo)
- Atherosclerotic aorto-femoral plaques (*manipulation of catheters*)

Air embolism (quite frequent) (easily preventable: catheter filling/flushing)

Contrast use (osmotic disruption of the blood-brain barrier) (*low osmotic agent*)

Miscellanous (intracranial bleeding in ACS, antithrombotic regimens...)

TCD: *Digital Power M-mode Doppler* Cardiac Catheterization Monitorring

Scraping of Aortic Debris by Coronary Guiding Catheters

Results of a prospective evaluation in 1,000 cases

Keeley EC et al. J Am Coll Cardiol 1998;1861-5

Digital Power M-Mode TCD

Easy Signal Acquisition & Vessel Identification

Microembolism in cardiac catheterization: TCD studies

Cerebral Microembolism detected by TCD during percutaneous transvenous mitral commisurotomy.

Kay et al. Am J Cardiol 1995;75:189-190.

TCD detection of microemboli during percutaneous transluminal coronary angioplasty.

Bladin et al. Stroke 1998;29:2367-2370.

TCD detection of cerebral microemboli during left heart catheterization.

Leclercq et al. Cerebrovasc Dis 2001;12:59-65.

Transesophageal Echocardiography

Case control study (152 strokes, 152 control)

Aortic atheroma: complex plaques protruding atheroma

OR = 21.3 [2.4-193.2]

Aortic Arch Atheroma and Stroke

Location of aortic plaques	Patients with Stroke	Control patients	Adjusted OR (95% CI)
	(n = 152)	(n = 152)	
No Atheroma	28 (18.4%)	55 (36.2%)	-
Small atheroma (<4mm)	56 (36.8%)	68 (44.7%)	1.9 [1.0-3.6]
Large Atheroma (>4mm)	68 (44.8%)	29 (19.1%)	4.3 [2.1-8.7]
- Non complex	34 (22.4%)	25 (16.5%)	2.4 [1.1-5.1]
- Complex	34 (22.4%)	4 (2.6%)	17.1 [5.1-57.3]
- Ulcerated	24 (15.8%)	3 (2.0%)	15.8 [4.1-61.4]
- Mobile	10 (6.6%)	1 (0.7%)	21.3 [2.4-193.2]

Catheter-related peripheral embolism

Karalis et al. Am Heart J 1996 ; 131 : 1149-56

Aortic atheroma and arterial access issue

Frequency and distribution of atherosclerotic plaques within the thoracic aorta in patients with CAD

Location of aortic plaques	CAD (n = 97)
Descending Aorta	90 (93%)
Aortic Arch	77 (80%)
Ascending Aorta	36 (37%)

Severity of atheroscleotic plaques / CAD	No plaques (grade I)	Simple (grade II)	Complex (grades III&IV)
Descending Aorta	7(7%)	34 (35%)	56 (58%) [47-68]
Aortic Arch	20 (21%)	38 (39%)	39 (40%) [30-51]
Ascending Aorta	61 (63%)	36 (37%)	0 [0-4]

Khoury Z Am J Cardiol 1997; 79: 23-27

Retrograde progression of aortic atheroma with age From Descending Aorta to the Arch and Ascending Aorta

Comparison of femoral and radial approaches for the occurrence of stroke

Sample size calculation:

- 0.2% risk of stroke by femoral approach
- 0.4% risk of stroke by radial approach
- 50% increase in risk
- Alpha level of 0.05
- Beta level of 0.20
- Randomized 1:1
- 25 000 patients are necessary

Surrogates endpoints?

DW MRI and stroke detection

Diffusion weighted Magnetic Resonance Imaging

Allowing the detection of subclinical brain injury

Silent stroke in cardiac catheterization: Diffusion-Weighted MRI studies

- Silent and apparent cerebral embolism after retrograde catheterization of the aortic valve in valvular stenosis: a prospective, randomized study.
 Omran et al. Lancet 2003;361:1241-1246.
- Cerebral infarction incidence and risk factors after diagnosis and interventional cardiac catheterization-prospective evaluation at DW MRI. Busing et al. Radiology 2005;235:177-183.
- Cerebral emboli during left heart catheterization may cause acute brain injury.
 Lund et al. Eur Heart J 2005;26:1269-1275.
- Cerebral Microembolism during Cardiac catheterization and risk of acute brain injury. A prospective DW MRI study. Hamon et al. Stroke 2006;37:2035-2038.
- Risk of acute brain injury related to cerebral microembolism during cardiac catheterization performed by right upper lim arterial access.
 Hamon et al. Stroke 2007;38:2176-2179.

Cerebral emboli during left heart catheterization may cause acute brain injury

47 pts, left catheterization (5 PCI), transcranial Doppler, Cerebral MRI 754 cerebral microemboli: 92.1% gaseous , 7.9% solid

% Solid microemboli: median (range) New cerebral lesions MRI* (%)	Transradial 78.7 57 (18-372) 15.2	Transfemoral 21.3 36 (12-66) 0	р 0.012 0.567
 *associated with solid microemboli: median (range) longer fluoroscopy time 	90 (60-372)	42 (12–246)	0.016
	11.3 (3.8-14.8)	5.2 (1.4–33.6)	0.039

6F diagnostic catheters + 0.038", J tip, 220 cm guidewire (Non randomized, non consecutive series, monocentric, small sample, no adjustment)

Cerebral emboli during left heart catheterization may cause acute brain injury

Cognitive impairment associated with degree of cerebral MRI injury (P = 0.03)

Lund, European Heart Journal 2005

Cereral infarction: Incidence and risk factors after diagnosis and interventional cardiac catheterization

Prospective evaluation at diffusion-weighted MRI

- 52 patients referred for cardiac catheterization
- MRI before (3-26h) and after procedure (12-48h)
- 11 experimented cardiologists
- 7 patients (15%) presented cerebral infarcts
- Patients remained asymptomatic: SBI
- Only duration of the procedure was independent predictor for cerebral infarction (p<.05)
- All femoral approach+++

Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study

N=101 patients 22% of silent embolism 3% clinically apparent

Fluoroscopy time 6.1 vs 2.9 min (p<0.0001)

Contrast media volume N° of catheter exchanges

Omran et al. Lancet 2003; 361: 1241–46

SCIPION (Silent Cerebral Infarct and PCI EvaluatION)

Cerebral Microembolism During Cardiac Catheterization and Risk of Acute Brain Injury

A Prospective Diffusion-Weighted Magnetic Resonance Imaging Study

Michèle Hamon, MD; Sophie Gomes, MD; Catherine Oppenheim, MD, PhD; Rémy Morello, MD, MPH; Rémi Sabatier, MD; Thérèse Lognoné, MD; Gilles Grollier, MD; Patrick Courtheoux, MD; Martial Hamon, MD

TABLE 2. Comparison of Recent Studies Exploring Brain Injury Using Serial DW at MRI After Cardiac Catheterization.

	n	Heparin	Fluoroscopy Time (min) DWI+/DWI-	Catheter Size (French)	Serial DW MRI	New Cerebral Infarction Observed %	New Cerebral Infarction Mid-Point [95% Cl]	Indication
0mran 2003 ³	101	5000 IU	6.1/2.9	6 F-7 F	100%	22%	23% [15-31]	Aortic stenosis
Lund 2005 ⁵	47	5000 IU	11.3/5.2	6 F	89%	13.5%	15.7% [6-26]	GAD
Busing 2005 ⁴	48	2500 IU	10.1/7.4	5 F-6 F-7 F	94%	15%	17% [7–28]	GAD
Hamon 2006	46	5000 IU	7.0/5.4	5 F	100%	2.2%	5.9%* [0.01-12.5]	Aortic stenosis

CAD indicates coronary artery disease.

*Only 1 new cerebral infarction in our consecutive series of 46 patients was documented (2.2%, observed proportion). The mid-point of the adjusted Wald interval and 95% Cl is calculated for all studies. It is noteworthy that by comparison to previous studies a lower rate of new cerebral infarction was documented by DW MRI in our series (P<0.02) and especially by comparison with the results of Omran et al³ (P<0.002).

SCIPION study

(Silent Cerebral Infarct and PCI EvaluatION)

Silent cerebral infarct after cardiac catheterization as detected by diffusion weighted Magnetic Resonance Imaging: a randomized comparison of radial and femoral arterial approaches Michèle Hamon¹, Francesco Burzotta², Catherine Oppenheim³, Rémy Morello⁴, Fausto Viader⁵, Martial Hamon^{*6} for the SCIPION Investigators⁷

Primary endpoint: -SBI as detected by DW-MRI Sample size: -152 pts, Randomized 1/1, Power 80%, P<0.05 (Lund et al. Lancet 2005 vs Hamon et al Stroke 2006)

Prospective Randomized Study in 4 centers:

- Janus Lipiecki, Clermont Ferrand, France
- Didier Carrié, Toulouse, France
- Francesco Burzotta, Roma, Italy
- Martial Hamon, Caen, France

SCIPION Trial Flow-chart

Preliminary results

Baseline characteristics of patients

%	Femoral (n=79)	Radial (n=86)	р
Age (yrs)	73.7 (2.5)	75.2 (1.8)	0.34
Men (%)	53.2 (11)	55.8 (10.5)	0.73
Smoking	31.6	32.5	0.90
Hypertension	74.6	76.7	0.75
Dyslipidemia	46.8	53.5	0.41
Diabetes	35.4	26.7	0.23
BMI > 30	32.3	28	0.48
Heredity	11.4	12.8	0.78
Prior AF	21.5	16.3	0.39
Prior stroke	3.8	4.6	0.91

Preliminary results

Procedural characterisctics

	Femoral (n=79)	Radial (n=86)	р
Procedural time (min)	25.2 (2.8)	24.7 (2.8)	0.81
Fluoroscopy (min)	7.24 (1.2)	7.77 (0.93)	0.49
CAD (%)	56.9	40.7	0.03
EF%	62.6 (2.7)	61.1 (2.6)	0.44
Gradient	46.1 (3.2)	48.4 (3.1)	0.31
AS crossed (%)	96.2	91.8	0.40
N catheters	4.07 (0.2)	3.79 (0.19)	0.052
1 st MRI/Cath (h)	12.3 (2.8)	13.4 (3.6)	0.63
2 nd MRI (h)	16.1 (3.5)	16 (2.9)	0.97

High Intensity Transient Signals

	Femoral	Radial	р
HITS	52.7 (11)	56.2 (29)	0.78

Preliminary results

Primary Endpoint New SBI on serial DW-MRI

	2	5			-
15				4	-
	5		ć.,	7	
1	2	1	r		
1	1	1	ii)		
	8	÷È	Ă.	Ŧ	N

Femoral (n=77)	Radial (n=84)	р
11.6% (9)	17.8% (15)	0.27
(5.4 to 21.0)	(10.3 to 27.7)	
12.6%	18.6%	
(6.0 to 20.9)	(11.02 to 27.5)	
moral		
	Prelimi	nary results
	Femoral (n=77) 11.6% (9) (5.4 to 21.0) 12.6% (6.0 to 20.9)	Femoral (n=77) Radial (n=84) 11.6% (9) (5.4 to 21.0) 17.8% (15) (10.3 to 27.7) 12.6% (6.0 to 20.9) 18.6% (11.02 to 27.5)

Conclusions

- Clinically apparent stroke are uncommon
- Unsuspected SBI in PCI up to 15-22% of cases!
- Risk factor : Duration of the procedure
- Both radial and Femoral approaches concerned: SCIPION
- High risk patients: Antithrombotics, Materials, Technical issues
- DWI, TCD, neuro-psychological tests: useful tools

