

CAS: Results and Current Limitation to Widespread Application

K. Mathias Radiologische Klinik General Radiology - Interventional Radiology Neuroradiology - Pediatric Radiology Molecular Imaging - Nuclear Medicine Klinikum Dortmund / Germany

I have nothing to disclose

TCT - Washington 2008

Why CAS?

because...

all of us - patient and physician - want a less traumatic tx

What are limitations for CAS?

- evidence of benefit
- patient's age and anatomy
- dedicated devices
- experience of interventionalists

Do results limit CAS?

Yes, as long as we have not proven equivalance of outcome:

- stroke
- MI
- death
- recurrent stenosis

The benchmark for CAS: CEA best medical tx

CEA What are the precedural stroke rates?

ECST	7.5%	1991	symptomatic stenosis
NASCET	5.8%	1991	
ACAS	2.3%	1995	asymptomatic
ACST	3.1%	2004	

CEA - What are the risks?

Risk Factors for Death/Stroke after CEA Ontario CEA Registry

6,038 patients, 1994-1997; 30-day death/stroke rate 6.0% 5 independent predictors (RF) of 30-day death/stroke

9.6%

- symptomatic carotid stenosis
 contralateral carotid occlusion
 history of atrial fibrillation
 history of congestive heart failure
- diabetes

KLINIKUM DO

Tu JV et al. Stroke 2003;34:2568-75

Impact of Cardiovascular Risk Factors on Outcomes Following CEA

1002 CEA in 852 patients, prospective data collection Prospective assessment, University of Brussels Clinical evaluation by the surgeon

	<u>30-Day death/stroke</u>	<u>OR</u>	
Overall	2.7%		
Diabetes	5.7%	3.3	
DM + HTN + Hyperl	ip 9.4%	4.2	

Debing E et al. Eur J Vasc Endovasc Surg 2006:31:622-6

Are these also th Risk Factors of CAS?

NO!

We have different RFs for CAS

- age >80 10% stroke rate
- aortic arch atherosclerosis
- arterial tortuosity
- severe CCA/ICA calcifications
- freely floating thrombus

Why Does Vascular Surgery Have Such a High Cardiac Complication Rate?

Asymptomatic Coronary Disease in Patients with Carotid Stenosis

Systematic coronary angiography in 200 patients with carotid disease <u>and no symptoms</u> of CAD

40% severe CAD (>70% stenosis of \geq 1 vessel)

46% mild-moderate CAD

14% normal coronary arteries

Hertzer, NR et al. Arch Intern Med 1985;145:849-52

AHA Scientific Statement On Coronary Risk Evaluation in Patients With Ischemic Stroke/TIA

Overall, evidence suggests that 25% to 60% of patients with carotid stenosis and <u>no symptoms</u> of CAD have abnormal provocative tests results for <u>myocardial ischemia</u> or angiographic evidence of <u>severe CAD</u>.

Cardiovascular Impact of CEA

Prospective single center randomized study on CEA in general anesthesia (GA) versus loco-regional anesthesia (LA) n=107, continuous 12-lead ECG during surgery and for 24 hours postoperatively

Myocardial ischemia in 22 patients (20.5%) No difference between general or local anesthesia

Sbarigia E et al. J Vasc Surg 1999;30;131-8

TCT - Washington 2008

quality

CAS - What we have to-day

- registries
 - self-reporting
 - independent control
- one-arm prospective trials market- or post-market trials
- prospective randomized trials
 CAS vs CEA

Clinical Trials				
Study ARCHER 1-3 BEACH CABERNET	Study Design high-risk registry high-risk registry high-risk registry	Sample Size 581 480 488	Status completed completed completed	
CASES CREATE I CAPTURE MAVERIC	>20,00	0 tx	mpleted mpleted molling mpleted	
MAVERIC MOMA PASCAL PRIAMUS ProCAS RULE SECURITY VIVA	LO registry high-risk registry Italian MoMa registry German all-CAS registry EU registry high-risk registry high-risk registry	157 113 416 >8,000 60 398 400	completed completed enrolling completed completed starting	

What is the purpose of these trials?

establishing evidence

KLINIKUMDO

- approval of CAS by health systems and governments
- getting reimbursement
- getting approval of devices
- offering patients a less invasive tx

KLINIKUMDO

Why High Risk Patients?

CEA for higher-risk patients does not produce the standard 6% (symptomatic) and 3% (asymptomatic) complication rates that the medical community expects

The High Risk Dilemma

- Patients excluded from NASCET and ECST = medical high risk
- Patients after surgery and/or radiotherapy of the neck
- = surgical high risk

High proportion of asymptomatic patients (72-86%) = interventional high risk (5-8%) - no benefit for the patient

US Carotid Stent Registries

30-day composite endpoint (stroke, MI, death)

CABERNET3.8%BEACH5.4%SECURITY7.2%ARCHER 27.8%SAPPHIRE7.8%

no benefit with such a complication rate!!!

Current CAS Approvals

<u>FDA:</u>

- High-risk for CEA with stenosis
 - symptomatic >50%
 - asymptomatic >80%

Prospective Randomized Trials

- CAVATAS
- SPACE
- EVA-3S
- ICSS
- CREST
- SAPPHIRE

symptomatic
patients
sympt. + asympt.
patients
sympt. + asympt.
high risk patients

TCT - Washington 2008

CAVATAS ...

CAVATAS

Type of Procedure	Technical Success	Neurological Deficits	Stroke & Death	3-Year Patency
CAS	>95%	8%	10.0%	NO significant
CEA	>95%	8%	10.0%	difference

Brown et al. Endovascular versus surgical treatment in patients with carotid stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomised trial. Lancet 2001;357:1729-37

Brown et al. Endovascular versus surgical treatment in patients with carotid stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomised trial. Lancet 2001;357:1729-37

SPACE

Stent-protected Percutaneous Angioplasty of the Carotid Artery vs. Endarterectomy

Primary Endpoints

ipsilateral stroke

ischemic stroke and/or intracerebral bleeding with symptoms lasting more than 24 hours **or**

death

of every cause between randomisation and day 30

MI not included

Secondary Endpoints

- ipsilateral stroke or vascular death within 24 months after treatment
- ipsilateral stroke with an impairment ≥ 3 on the modified Rankin scale or death of every cause between randomization and day 30±3 after tx
- strokes of every localisation and severity within
 24 months after the intervention
- re-stenosis more than 70% measured with US
- procedural failure

Study Population

randomised 1200				
	CAS	CEA		
consent withdrawn	6	11		
ITT-pop	599	584		
not treated	1	1		
switched tx	13	6		
PP-pop	585	577		
EPD	yes no 172 413			

Primary Endpoint Results

KLINIKUMDO

any ipsilateral stroke and death between randomization and day 30

	CAS (n=599)	CEA (n=584)	
primary endpoints	41 6.84%	37 6.34%	
absolute difference (95% CI)	0.51% (-2.37 to 3.39%) p = 0.09		
odd ratio (95% CI)	1.09 (0.69 to 1.72)		

Primary Endpoint Results

Primary Endpoint Results

KLINIKUM DO

SPACE 2-Y FU Data

- Periprocedural stroke or death, plus ipsilateral ischemic stroke
 - − CEA 8.8% +1.9% − CAS 9.5% +2.2% +2.2%
- the rate of recurrent ipsilateral ischemic strokes is similar for both treatment groups after 2 years

Eckstein et al, Lancet Neurology, published online Sept 6, 2008.

French prospective randomized trial

EVA-3S

Inclusion criteria

- retinal or hemispheric TIA
- non-disabling stroke
- 60-99% stenosis
- plaque morphology irrelevant

Exclusion criteria

- m-Rankin scale ≥3
- non-atherosclerotic disease
- tandem stenosis
- bleeding disorder
- previous revascularization

- uncontrolled hypertension, DM, unstable angina
- contraindication to heparin, ticlopidine, clopidogrel
- life expectancy <2 years

EVA-3S

<u>Trial enrolled patients from</u> Nov-2000 to Sep 2005 527 patients randomized

stopped due to recommendation of the safety committee

EVA-3S					
Outcome Event	CEA	CAS	unadjusted RR	p- value	
nonfatal stroke	7 (2.7%)	23 (8.8%)	3.3 (1.4-7.5)	0.004	
- sympt. > 7d	6 (2.3%)	20 (7.7%)			
- nondisabling	6 (2.3%)	16 (6.1%)			
- disabling	1 (0.4%)	7 (2.7%)			
death	3 (1.2%)	2 (0.8%)	0.7 (0.1-3.9)	0.68	
- fatal stroke	2 (0.8%)	1 (0.4%)			
- other cause	1 (0.4%)	1 (0.4%)			
any stroke or death	10 (3.9%)	25 (9.6%)	2.5 (1.2-5.1)	0.01	
any disabling stroke or death	4 (1.5%)	9 (3.4%)	2.2 (0.7-7.2)	0.26	
TIA	2 (0.8%)	6 (2.3%)	3.0 (0.6-14.6)	0.28	
MI	2 (0.8%)	1 (0.4%)	0.5 (0.04-5.4)	0.62	

EVA-3S

How to interpret this trial? Recruitment of Operators

16% of pts. tx by interventionalist with >50 CAS
45% of pts. tx by interventionalists with < 50 CAS
39% of pts. tx by physicians in training

EVA-3S

How to interpret this trial?

Severe Complications

- fatal stroke CAS 50% lower than CEA
- MI CAS 50% lower than CEA
- death CAS 20% lower than CEA

Even CAS beginners have a better outcome with severe complications !!!

EVA-3S 4-Y FU Data

Periprocedural and non-periprocedural ipsilateral stroke or death CEA 6.2% 3.9% +2.3% CAS 11.1% 9.6% +1.5%

<u>Mas:</u> "Carotid stenting is as effective as carotid endarterectomy for middle-term prevention of ipsilateral stroke, but the safety of carotid stenting needs to be improved before it can be used as an alternative to carotid endarterectomy in patients with symptomatic carotid stenosis,"

JL Mas et al, Lancet Neurology, published online September 6, 2008. European Stroke Conference 2008, May 14.

TCT - Washington 2008

CREST

Total Population - 30 day Events

CREST

Total Population Outcomes vs Age

CREST

70-79 yrs Age Group 30 day Events

TCT - Washington 2008

SAPPHIRE ...

SAPPHIRE

Medical and surgical high risk patients symptomatic and asymptomatic

Primary Endpoints

 Death, any Stroke, and MI at 30-days post-procedure

MI rate higher with CEA vs CAS

 Death and Ipsilateral Stroke between 31-days and 12-months post-procedure

J. Yadav et al.; NEJM, 2004

SAPPHIRE

1 year data randomized patients

Eve	ents	Stent (159 pts)	CEA (151 pts)	p Value
Dea	ath:	11 (6.9%)	19 (12.6%)	0.12
Stro	oke:	9 (5.7%)	11 (7.3%)	0.65
	Major Ipsilateral:	0 (0.0%)	5 (3.3%)	0.03*
	Major Non Ipsilateral:	1 (0.6%)	1 (0.7%)	>0.99
	Minor Ipsilateral:	6 (3.8%)	3 (2.0%)	0.50
	Minor Non Ipsilateral:	3 (1.9%)	3 (2.0%)	>0.99
MI	(Q or NQ)	4 (2.5%)	12 (7.9%)	0.04*
	Q-Wave MI	0 (0.0%)	2 (1.3%)	0.24
	Non-Q-Wave MI	4 (2.5%)	10 (6.6%)	0.10
MA	ΑΕ:	19 (11.9%)	30 (19.9%)	0.06
			* Signi	ificant Difference

SAPPHIRE

1 year data randomized patients

Events	Stent (159 pts)	CEA (151 pts)	p Value
MAE without non neuro deaths >30 days	9 (5.7%)	19 (12.6%)	<0.05*
MAE without MI or non- neuro deaths >30 days	8 (5.0%)	11 (7.3%)	0.48

* Significant Difference

SAPPHIRE: Cumulative Percentage of Target Lesion Revascularization at 1080 Days

SAPPHIRE: Cumulative Percentage of MAE at 1080 Days

Strokes Prevented per 1000 CEA/CAS

source: ACAS, ACST, ECST & NASCET

"Contrary to what is generally assumed, no systematic evidence exists to support the preferential use of CEA over CAS or vice versa"

Naylor, AR. Vascular surgeon, SPACE editorial, Lancet, September 2006

TCT - Washington 2008

Anatomy

Problems:

Access: diffuse atherosclerosis, stenosis, occlusion, tortuosity Lesion characteristic: calcification, fresh thrombus, string sign Cerebral protection: placement, ischemic reactions, retrieval ...

Age

Experience

Learning Curve often underestimated!

US registries EVA-3S SPACE

Not within the AHA limits of 3% asymptomatic stenosis 6% symptomatic stenosis

Complication rate is decreasing with more than 100 to 150 CAS cases!

TCT - Washington 2008

Conclusions

CAS Limitations - What we can improve

- evidence of benefit
- dedicated devices
- experience of interventionalists

CAS Limitations - What we must respect

patient's age and anatomy

Velocity of earth 108,000 km/h Our journey during this talk 36,000 Km Thank you for flying with me!