Approach to the Patient with Carotid Artery Disease

Michael R. Jaff, DO, FACP, FACC Director, Vascular Medicine Massachusetts General Hospital Boston, Massachusetts

Conflict of Interest Statement

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

<u>Physician Name</u> Michael R. Jaff

Company/Relationship Cordis Endovascular **Boston Scientific** Medtronic Vascular Abbott Vascular **BMS/Sanofi-Aventis** Medical Simulation Corp Pathway Medical Paragon Medical Square One, Inc. Access Closure, Inc Setagon, Inc. TCT

Rate of Deaths Due to Atherosclerosis is Increasing in U.S.

JAMA 2005;294:1255.

American Heart Association/ American Stroke Association Guidelines

Guidelines for Prevention of Stroke in Patients With Ischemic Stroke or Transient Ischemic Attack: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association Council on Stroke: Co-Sponsored by the Council on Cardiovascular Radiology and Intervention: The American Academy of Neurology affirms the value of this guideline. Ralph L. Sacco, Robert Adams, Greg Albers, Mark J. Alberts, Oscar Benavente, Karen Furie, Larry B. Goldstein, Philip Gorelick, Jonathan Halperin, Robert Harbaugh, S. Claiborne Johnston, Irene Katzan, Margaret Kelly-Hayes, Edgar J. Kenton, Michael Marks, Lee H. Schwamm and Thomas Tomsick *Stroke* 2006;37;577-617

Burden of Stroke in the U.S.

- 1 stroke every 45 seconds (700,000 per year)
- 2.4 million non-institutionalized stroke survivors
- Stroke causes 1 in 15 deaths
- Approximately 30 % aged 70-80 have silent brain infarction
- Stroke cost= 58.8 billion/year

TIAs Cause Early Stroke and Cardiovascular Events

Follow up of 1707 subjects diagnosed with TIA in ED

Risk Factors for Events:ORAge > 60 y1.8Diabetes2.0>10 Min TIA2.3Weakness1.9Speech1.5

JAMA. 2000;284:2901-2906

Stroke Subtype Frequency

TABLE 1. APPROXIMATE DISTRIBUTION OF MAJOR SUBTYPES OF ISCHEMIC STROKE.*

TYPE OF STROKE	PROPORTION OF STROKES (%)
Large-vessel atherothrombotic Due to internal-carotid-artery stenosis	15 9
Small-vessel (lacunar)	25
Embolic Due to atrial fibrillation	60 15
Other (due to dissection or other causes)	3

*The data are from the Stroke Data Bank of the National Institute of Neurological and Communicative Disorders and Stroke² and the Framingham Study.³The percentages do not total 100 because of a modification of the categories of stroke used.

Furie KL, Kistler JP, NEJM 2000

Artery to Artery Embolism

with Greater Degrees of ICA Stenosis?

• 696 Patients evaluated with Carotid Duplex Ultrasonography 369 Male/327 Female Mean Age 64 years Mean Follow-Up 41 months **Duplex Ultrasonography Categories** Mild <50% Stenosis Moderate 50-75% Stenosis Severe >75% Stenosis

Stroke 1991;22:1485

Vascular Risk of Asymptomatic Carotid Stenosis

Category	Ν	TIA	CVA	Cardiac Event	Vascular Death
<50%	303	1	1.3	2.7	1.8
50-75%	216	3	1.3	6.6	3.3
>75%	177	7.2	3.3	8.3	6.5

75% of Events were Ipsilateral to the Stenosis

Stroke 1991;22:1485

The Diagnosis of Carotid Artery Disease

- Complete neurologic history and physical examination
- Complete medical history and physical examination
- Carotid Duplex Ultrasonography
- (?) Magnetic Resonance Arteriography
- (?) CT Angiography
- (?) Arteriography

What Can the Physical Exam Tell You About the Etiology of Stroke?

Atrial Fib/Flutter, Bradycardia	Likely Cardiogenic Embolus
No pulse below knee	Recurrent systemic embolus
Carotid Bruit	Severe Extracranial Carotid Stenosis
Head/Orbital Bruit	AV Malformation
Fever and Acute CVA	Endocarditis and Cardiogenic Embolus
Stroke and Altered MS	Check Glucose, EtOH, Narcotics, O/D, other Toxins

Cervical Bruit

Marker of systemic atherosclerosis Not indicative of severity of internal carotid artery stenosis NASCET: Sensitivity 63%/Specificity 61% Frequency of Cervical Bruits ~1-3% in adults aged 45-54 years \sim 8% in adults \geq 75 years

Causes of Cervical Bruit (Systolic, Diastolic, or Both)

- Carotid atherosclerosis
- Thyrotoxicosis
- Transmitted cardiac murmur
 - Aortic Stenosis (systolic)
 - Aortic Insufficiency (diastolic)
- Arteriovenous Fistula (systolic/diastolic)
- Venous Hum (systolic or systolic/diastolic)

Indications for Carotid Duplex Ultrasonography

- Cervical bruit in an asymptomatic individual
- Amaurosis Fugax
- Transient Ischemic Attack
- Stroke in a potential candidate for CE or stent
- Follow-up of known stenosis (>20%) in asymptomatic individuals
- Follow-up after carotid endarterectomy or stent
- Intraoperative assessment of carotid endarterectomy
- Drop attacks (rare)

80-99% Internal Carotid Artery Stenosis

What is the Relationship Between PSV and Carotid Stenosis?

Radiology 2000;214:247-252

Carotid MRA

Carotid Duplex Ultrasonography Ipsilateral to Bruit

CT Angiogram

What is the Best Imaging Strategy in Carotid Artery Disease?

- Meta analysis of studies published between 1980-2004
- 41 studies
- 2541 patients/4876 arteries

Optimal Imaging for Carotid Stenosis

	DUS	СТА	MRA	CEMRA
70–99% stenosis				
Sensitivity	0.89	0.77	0-88	0·94
(95% CI)	(0.85-0.92	(0.68–0.84)	(0-82-0-92)	(0·88–0·97)
Specificity	0·84	0.95	0-84	0.93
(95% CI)	(0·77–0·89)	(0.91–0.97)	(0-76-0-97)	(0.89–0.96)
50-69% stenosis				
Sensitivity	0·36	0·67	0·37	0.77
(95% CI)	(0·25-0·49)	(0·30–0·90)	(0·26-0·49)	(0.59-0.89)
Specificity	0-91	0.79	0.91	0·97
(95% CI)	(0-87-0-94)	(0.63–0.89)	(0.78-0.97)	(0·93–0·99)
0–49% stenosis or 100% occluded				
Sensitivity	0-83	0-81	0.81	0.96
(95% Cl)	(0-73-0-90)	(0-59-0-93)	(0.70-0.88)	(0.90-0.99)
Specificity	0·84	0·91	0-88	0·96
(95% CI)	(0·62–0·95)	(0·74–0·98)	(0-76-0-95)	(0·90–0·99)

Lancet 2006;367:1503-12

What is the Best Imaging Strategy in Carotid Artery Disease?

- Meta analysis of studies published between 1980-2004
- 41 studies
- 2541 patients/4876 arteries

 In analyzing 70-99% stenosis, CE MRA had the greatest sensitivity/specificity

What Does This Arteriogram Reveal?

Spontaneous Carotid Dissection

N Engl J Med 2001;344:898-906

Once in an ED, You Must Get an Imaging Test IMMEDIATELY!

Classic Wedge-Shaped Acute Right MCA Stroke

Important Characteristics of the CT Scan

- Within 3 hours of onset of ischemia, the CT without contrast is virtually normal
- After 6-12 hours, there is evidence of hypodensity with brain edema
- Hemorrhage
 - Appearance will describe type
 - Subdural Hematoma: Crescent shape below dura
 - Subarachnoid Hemorrhage: Diffuse blood pattern along surface of brain in subarachnoid space
 - 5% of SAH have NORMAL CT!!! MUST perform Lumbar Puncture
 - Discern between SAH and traumatic LP
 - RBC Count in 4 tubes all similar
 - Xanthochromic Supernatant---old RBCs consistent with SAH

MRI Demonstrating Acute Right MCA CVA

National Institutes of Health Stroke Scale (NIHSS)

- Systematic clinical assessment tool
- Designed in 1983 to standardize and document a reliable, valid neuro assessment
- Measures neurologic deficits
 - Does not assess function
- 5-8 minutes to complete
- Scores range from 0-42
- 11 items tested

http://www.ninds.nih.gov/doctors/stroke_scale_training.htm

What if Patient Has Altered Mental Status?

Glasgow Coma Scale

- Eye Opening
 - Spontaneous...4
 - In response to speech...3
 - In response to pain...2
 - None...1
- Best Verbal Response
 - Oriented...5
 - Confused...4
 - Inappropriate Words...3
 - Incomprehensible...2
 - None...1

- Best Motor Response
 - Obeys...6
 - Localizes...5
 - Withdraws...4
 - Abnormal Flexion...3
 - Abnormal Extension...2
 - None...1

Glascow Coma Scale

Eyes open				
Never To pain To verbal stimuli Spontaneously	1 2 3 4			
Best verbal response				
No response Incomprehensible sounds Inappropriate words Disoriented and converses Oriented and converses	1 2 3 4 5			
Best motor response				
No response Extension	1			
(decerebrate rigidity)	2			
(decorticate rigidity)	3			
Flexion withdrawal	4			
Obeys	6			
Total	3–15			

Stroke Prevention Strategies

- Reduction in Blood Pressure
- Cessation of Tobacco Use
- Reduction in Serum Cholesterol
- Aggressive Glycemic Control
- Antiplatelet Therapy
- Revascularization of Carotid Stenosis

Risk of CVA Among Women Who Smoke and Have Partners Who Smoke

5379 Women Who Smoke Followed for 8.5 Years

Participants	Sample Size	No. of Events	Event Rate/100	Age-Adjusted RR (95% Cl)	Multivariate-Adjusted RR (95% Cl)	Р
Cardiovascular diseases						
Cigarette-smoking women with nonsmoking spouse	443	28	6.3	Reference	Reference	Reference
Cigarette-smoking women with cigarette-smoking spouse	1904	174	9.1	1.4 (0.95-2.1)	1.4 (0.9-2.0)	0.1
All strokes						
Cigarette-smoking women with nonsmoking spouse	443	2	0.5	Reference	Reference	Reference
Cigarette-smoking women with cigarette-smoking spouse	1904	49	2.6	5.7 (1.4-24)	5.7 (1.4-24)	0.02
Ischemic stroke						
Cigarette-smoking women with nonsmoking spouse	443	2	0.5	Reference	Reference	Reference
Cigarette-smoking women with cigarette-smoking spouse	1904	43	2.3	5.1 (1.2-21)	4.8 (1.2-20)	0.03

Stroke 2005;36:e74-e76

Statins Decrease the Risk of Stroke in High Risk Patients: Heart Protection Study

SIMVASTATIN: MAJOR VASCULAR EVENTS

50% reduction in CEA or angioplasty (simvastatin 42 [0·4%] *vs* placebo 82 [0·8%]; P=0·0003)

MRC/BHF HPS Investigators Lancet 2002; 360 (9326): 7

The Ultimate Lipid Trial in Stroke: SPARCL

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 10, 2006

VOL. 355 NO. 6

High-Dose Atorvastatin after Stroke or Transient Ischemic Attack

The Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators*

SPARCL

 4731 patients with recent CVA/TIA (1-6) months before randomization) • NO KNOWN CAD LDL-C 100-190 mg/dL Randomized to Placebo vs Atorvastatin 80 mg/d Primary Endpoint: First non-fatal or fatal stroke

N Engl J Med 2006;355:549-559

SPARCL

N Engl J Med 2006;355:549-559

Fatal Stroke

143

167

SPARCL

N Engl J Med 2006;355:549-559

The Most Important Publication in Diabetes Research in Our Time

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

DECEMBER 22, 2005

VOL. 353 NO. 25

Intensive Diabetes Treatment and Cardiovascular Disease in Patients with Type 1 Diabetes

The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group*

Diabetes Control and CV Events

The DCCT (Diabetes Control and Complications Trial)

- 1441 patients with Type 1 DM (1983-1993)
- Randomized to conventional vs intensive glycemic control
- Treated for mean of 6.5 years
- 93% followed until February 2005

 CV Disease defined as: Non-Fatal MI, CVA, Death due to CV Disease, Angina, Need for CABG/PCI)

N Engl J Med 2005;353:2643-53.

Cumulative Incidence of Non-Fatal MI, CVA, CV Death

N Engl J Med 2005;353:2643-53.

Cumulative Incidence of Non-Fatal MI, CVA, CV Death

Intensive Treatment:

Reduced Risk of ANY CV Event by 42%
Reduced Risk of Non-Fatal MI, CVA, CV Death by 57%

•Reduction in HbA1C explained vast majority of benefit

0.00 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Years since Entry

N Engl J Med 2005;353:2643-53.

Aspirin & Dypyridamole Decreases Stroke after TIA European Stroke Prevention Study

6602 pts with recent TIA or CVA followed for 2 years

J Neurol Sci 1996; 143(1-2):1

Surgery for Carotid Stenosis

Early vs Deferred Carotid Endarterectomy in Asymptomatic Patients with >70% ICA Stenosis

- Risk of CVA/Death within 30 days of CEA
 - **3.1%**
- 5-year CVA risk
 3.8% immediate CEA
 11% deferred CEA (p<0.0001)

 Half of all CVAs were disabling

 Combining peri-op and non-peri-op CVA
 5-year CVA risk

 6.4% vs 11.8% (p<0.0001)

ACST Investigators. Lancet 2004;363:1491-1502

Carotid Endarterectomy

Complications

- Wound Complications
 - Hematoma 0.7-1.5%
 - Infection/Pseudoaneurysm 0.15%
 - Cranial Nerve Dysfunction
 - Hypoglossal Nerve 5-8%
 - All other Cranial Nerves <2%
 - Perioperative Stroke
 - Cleveland Clinic
 - 1.5% Asymptomatic
 - 2.7% Prior TIA
 - 3.8% Prior CVA

Decision Memo for Carotid Artery Stenting (CAG-00085R)

Decision Summary

The Centers for Medicare and Medicaid Services (CMS) has determined that the evidence is adequate to conclude that carotid artery stenting (CAS) with embolic protection is reasonable and necessary for the following:

- Patients who are at high risk for carotid endarterectomy (CEA) and who also have symptomatic carotid artery stenosis
 ≥ 70%. Coverage is limited to procedures performed using FDA approved carotid artery stenting systems and embolic
 protection devices;
- Patients who are at high risk for CEA and have symptomatic carotid artery stenosis between 50% and 70%, in accordance with the Category B IDE clinical trials regulation (42 CFR 405.201), as a routine cost under the clinical trials policy (Medicare NCD Manual 310.1), or in accordance with the National Coverage Determination on CAS post approval studies (Medicare NCD Manual 20.7);
- Patients who are at high risk for CEA and have asymptomatic carotid artery stenosis ≥ 80%, in accordance with the Category B IDE clinical trials regulation (42 CFR 405.201), as a routine cost under the clinical trials policy (Medicare NCD Manual 310.1), or in accordance with the National Coverage Determination on CAS post approval studies (Medicare NCD Manual 20.7).

Who Will Be Covered? •Patients at high risk for CEA with a SYMPTOMATIC carotid artery stenosis $\geq 70\%$ •Patients at high risk for CEA with a SYMPTOMATIC carotid artery stenosis between 50% and 70% AND are enrolled in a Category B IDE Clinical Trial •Patients at high risk for CEA with an ASYMPTOMATIC carotid artery stenosis $\geq 80\%$ AND are enrolled in a Category B IDE Clinical Trial

What is "High Risk"?

Serious Co-Morbid Medical Condition

- -Congestive heart failure (class III/IV) and/or known severe left ventricular dysfunction

 - LVEF <30%
- -Open heart surgery needed within six weeks
- -Recent MI (>24 hrs. and <4 weeks)
- -Unstable angina (CCS class III/IV)
- -Severe pulmonary disease

Anatomic Challenges

- -Contralateral carotid occlusion
- -Contralateral laryngeal nerve palsy
- -Radiation therapy to neck
- Previous CEA with recurrent stenosis
- High cervical ICA lesions or CCA
 - lesions below the clavicle
- Severe tandem lesions
- Age > 80 years

SAPPHIRE Data

Event	Intention-to-Treat Analysis		Actual-Treatment Analysis			
	Stenting (N - 167)	Endarterectomy (N - 167)	P Value	Stenting (N - 159)	Endarterectomy (N - 151)	P Value
		no. (%)		no. (%)		
Death	12 (7.4)	21 (13.5)	0.08	11 (7.0)	19 (12.9)	0.08
Stroke	10 (6.2)	12 (7.9)	0.60	9 (5.8)	11 (7.7)	0.52
Major ipsilateral	1 (0.6)	5 (3.3)	0.09	0	5 (3.5)	0.02
Major nonipsilateral	1 (0.6)	2 (1.4)	0.53	1 (0.6)	1 (0.7)	0.97
Minor ipsilateral	6 (3.7)	3 (2.0)	0.34	6 (3.8)	3 (2.2)	0.37
Minor nonipsilateral	3 (1.9)	4 (2.7)	0.64	3 (2.0)	3 (2.1)	0.89
Myocardial infarction	5 (3.0)	12 (7.5)	0.07	4 (2.5)	12 (8.1)	0.03
Q-wave	0	2 (1.2)	0.15	0	2 (1.3)	0.15
Non–Q-wave	5 (3.0)	10 (6.2)	0.17	4 (2.5)	10 (6.7)	0.08
Cranial-nerve palsy	0	8 (4.9)	0.004	0	8 (5.3)	0.003
Target-vessel revascularization	1 (0.6)	6 (4.3)	0.04	1 (0.7)	6 (4.6)	0.04
Conventional end point (stroke or death at 30 days plus ipsilateral stroke or death from neurologic causes within 31 days to 1 yr)	9 (5.5)	13 (8.4)	0.36	8 (5.1)	11 (7.5)	0.40
Primary end point (death, stroke, or myocardial infarction at 30 days plus ipsilateral stroke or death from neurologic causes within 31 days to 1 yr)	20 (12.2)	32 (20.1)	0.05	19 (12.0)	30 (20.1)	0.05

N Engl J Med 2004;351:1493-501.

1 Year Composite MAE Endpoint Carotid Stenting Trials

Carotid Revascularization Endarterectomy vs. Stenting Trial

Recruitment Goals

- ▶ 113 sites in U.S., plus 10 in Canada
- 2500 randomized subjects
 \$1400 symptomatic, 1100 asymptomatic
 - 40% women12% minorities
- Monitored & reported by:
 Overall
 By site
 By Sex & minority

Carotid Revascularization Endarterectomy vs. Stenting Trial

Recruitment in CREST

≻Goal - 2500

Total number of randomized subjects (10/12/06) - 1393

- ✤ Symptomatic 841
- ✤ Asymptomatic 552

Carotid Revascularization Endarterectomy vs. Stenting Trial

Cumulative Randomizations

Who Benefits from Carotid Therapy Today?

- Symptomatic patients with >70% ipsilateral carotid artery stenosis deserve revascularization
 - High Risk for CEA: Candidate for CAS
- The jury (CMS) remains out on ANYONE else
- Symptomatic patients with 50-69% ipsilateral carotid artery stenosis
 - Candidates for CEA (CAS if high risk and in trial)
- Asymptomatic patients with >60% carotid stenosis
 - ??? CEA
 - Trial to evaluate CAS
 - Optimize medical therapy?
 - Enroll in TACIT?
- EVERYONE gets optimal
 - Antiplatelet Therapy
 - Antihypertensive Therapy
 - Lipid Lowering Therapy
 - Strategies to Stop Smoking
 - Tight Glycemic Control