Pre-and Post Procedure Non-Invasive Evaluation of the Patient with Carotid Disease

Michael R. Jaff, D.O., F.A.C.P., F.A.C.C. Assistant Professor of Medicine Harvard Medical School Director, Vascular Medicine Vascular Diagnostic Laboratory Massachusetts General Hospital Boston, Massachusetts

TRANSCATHETER CARDIOVASCULAR THERAPEUTICS

- Physical Examination
- Carotid Duplex Ultrasonography
- Magnetic Resonance Arteriography
- Computerized Tomographic Arteriography

• Physical Examination

- Carotid Duplex Ultrasonography
- Magnetic Resonance Arteriography
- Computerized Tomographic Arteriography

Finding of a Cervical Bruit does *NOT* Define Presence or Severity of Extracranial Carotid Artery Stenosis

- Physical Examination
- Carotid Duplex Ultrasonography
- Magnetic Resonance Arteriography
- Computerized Tomographic Arteriography

Carotid Duplex Ultrasonography

- Highly accurate and reliable test
- Advantages
 - Direct visualization of the extracranial carotid arteries
 - Accurate determination of degrees of stenosis
 - Assess presence and morphology of plaque
 - Useful tool to evaluate revascularization procedures
- DUS can determine anatomic high risk scenarios
 - High bifurcation lesion
 - Ostial CCA stenosis
 - Contralateral Occlusion
- DUS can determine cases suboptimal for CAS
 - Tortuosity
 - Thrombus
 - Dense calcification

Gray Scale Carotid Duplex Scan

The Importance of a Correct Doppler Angle

The Angle should never exceed 60⁰

Carotid Duplex Ultrasonography

80-99% Internal Carotid Artery Stenosis

Modern Criteria for Duplex Ultrasound Determination of ICA Stenosis

	Velocity Criteria, cm/sec	Spectral Broadening
0-19%	<u><</u> 105	No
20-39%	<u><</u> 105	Yes
40-59%	> 105, <u><</u> 150	Yes
60-79%	> 150, <u><</u> 220	Yes
80-99%	> 220 AND End Diastolic Velocity <u>></u> 135	Yes
Occluded	No Doppler Signal, Pre-Occlusive Thump	'High Resistant' CCA signal

SRU Consensus Panel Criteria for Grading ICA Stenosis

Consensus Panel Gray-Scale and Doppler US Criteria for Diagnosis of ICA Stenosis

	Primary Parameters		Additional Parameters		
Degree of Stenosis (%)	ICA PSV (cm/sec)	Plaque Estimate (%)*	ICA/CCA PSV Ratio	ICA EDV (cm/sec)	
Normal <50 50–69 ≥70 but less than near occlusion	<125 <125 125–230 >230	None <50 ≥50 ≥50	<2.0 <2.0 2.0-4.0 >4.0	<40 <40 40_100 >100	
Near occlusion	High, low, or undetectable	Visible	Variable	Variable	
Total occlusion	Undetectable	Visible, no detectable lumen	Not applicable	Not applicable	

CAVATAS DUS Criteria

Stenosis (%)	PSV ICA (m/s)	EDV ICA (m/s)	PSV ICA/PSV CCA
0–29	<1.0	<0.4	<3.2
30–49	1.1–1.3	<0.4	<3.2
50–59	>1.3	<0.4	<3.2
60–69	>1.3	0.4–1.1	3.2-<4.0
70–79	>2.1	1.2-1.4	≥4.0
80–95	>2.1	>1.4	≥4.0
96–99	String Flow	String Flow	String Flow
100	Occluded	Occluded	Occluded

Pitfalls of Carotid Duplex Imaging

- Misidentification of a pulsatile vein for the internal carotid artery
- Misidentification of the external carotid as the internal carotid artery
 - i.e. External carotid artery with significant stenosis
- Tortuous vessels
- Failure to survey the distal internal carotid artery
- Failure to interrogate the common carotid or innominate arteries
- Near total occlusion ("string sign")
- Calcification
- Distal ICA or ostial CCA stenosis

Can Carotid Duplex Ultrasonography Detect Vulnerable Plaque?

- 496 CAS procedures worldwide evaluated pre-intervention with duplex-US derived Gray Scale Median (GSM) scores
- 415 cases actually underwent CAS
 - 219 cases with embolic protection devices
- CAS Complications
 - 13 TIAs
 - 9 Minor CVAs
 - 6 Major CVAs
 - 0 Deaths

Gray Scale Median: Based on notion that echolucent plaques have higher embologenic potential than echodense plaques

Multiple Logistic Regression Analysis Odds Ratio of Stroke

	0R	Р	95% CI
GSM			
≤25 vs >25	7.11	0.002	2.06-24.57
Stenosis, %			
≥85 vs <85	5.76	0.010	1.51-21.91
Symptomatology			
Symptomatic vs asymptomatic	2.92	0.061	0.95-8.93
Brain CT			
Positive vs negative	2.54	0.099	0.84-7.47

Carotid Duplex Ultrasonography Post-CEA

Carotid Duplex Sonography of Endovascular Stents

B-mode image: More important than in Native DUS

- Evaluate stent from 2 views in gray scale
 Proximal and distal ends: apposition to wall
- •Stent integrity
- Confirm abnormal findings from 2 viewsInclude proximal and distal native vessel

Post-Stent Gray Scale B Mode is Critical

24 Hours Post-ICA Stent

Duplex Assisted Carotid Artery Stenting

J Vasc Surg 2005;41:409-15

Duplex Assisted Carotid Artery Stenting

J Vasc Surg 2005;41:409-15

Duplex Assisted Carotid Artery Stenting

J Vasc Surg 2005;41:409-15

Selection of Patients for Carotid Stenting Using DUS Findings

- Retrospective study of 139 patients with carotid DUS available hospital records
- Plaque Characteristics on DUS
 58% had irregular surfaces
 53% with heterogeneous findings

 Combination of irregular, heterogeneous plaques increased risk of ipsilateral neurologic events (p<0.0001)

• Implications for carotid stenting? J Endovase Surg 1999;6:59-65. Problems with Carotid Duplex Ultrasonography in Stented Carotid Arteries

- No well performed, prospective trials validating carotid duplex US in carotid stents
- Early experience suggests that peak systolic velocities (PSV) after carotid stenting are elevated when compared to non-stented arteries
- Plaque shadowing
- Stent deployment issues

Carotid Duplex Ultrasonography--Carotid Stent Imaging

DUS Follow-Up of Stented Carotid Arteries

- 114 patients
- Angiography immediately after carotid stent deployment
- DUS performed within 1 week of procedure
 - Four Criteria used
 - -1) Peak in-stent SV >125 cm/s
 - -2) ICA/CCA >3.0
 - -3) Peak in-stent SV >170 cm/s
 - -4) ICA/CCA >2.0

Neurosurgery 2002;51:639-643

Carotid In-Stent Restenosis

DUS Follow-Up of Stented Carotid Arteries

Criteria	Number of Patients
PSV In Stent >125 cm/s	36
ICA/CCA Ratio >3.0	3
PSV In Stent >170 cm/s	8
ICA/CCA Ratio >2.0 rosurgery 2002:51:639-643	14

Neu

DUS Follow-Up of Stented Carotid Arteries

- No patient with DUS evidence of stenosis had angio evidence of >50% residual stenosis
- 3/9 with follow-up angio had restenosis
- In each of these 3 patients, all had increase in PSV >80% since post-stent DUS

CAVATAS Restenosis: CEA vs Endo

CAVATAS Restenosis: PTA vs Stent

CAVATAS Restenosis: Endo vs Surgery

	Stenosis Severity	TIA/AF	RS	NDS	DS	FS	Total
Endovascular patients	<70% (n=141)	7 (5.0)	1 (0.7)	0	0	3 (2.1)	11 (7.8)
	≥70% (n=32)	4 (12.5)	0	1 (3.1)	0	0	5 (15.6)*
Surgery patients	<70% (n=165)	5 (3.0)	0	3 (1.8)	2 (1.2)	0	10 (6.1)
	\geq 70% (n=9)	0	0	0	0	0	0

*p=0.02

What are the Current Criteria for Carotid Stent Duplex Ultrasonography?

Peak Systolic Velocity <150 cm/sec ICA/CCA PSV Ratio <2.16

J Vasc Surg 2004;39:58-66

Why Are Velocities Higher in the Stented ICA?

J Vasc Surg 2004;39:58-66

- Physical Examination
 Carotid Duplex Ultrasonography
- Magnetic Resonance Arteriography
- Computerized Tomographic Arteriography

Gd Enhanced MRA

- No ionizing radiation
- Non-invasive (no arterial catheterization)
- Non-nephrotoxic contrast
- Allergic reactions rare
- High accuracy
- 3D allows multiplanar reformatting
- Decreased cost
- SUPERIOR IMAGE QUALITY
- FAST IMAGING

Carotid MRA

Preoperative Evaluation of Carotid Artery Stenosis: Comparison of Contrast-MR Angiography and Duplex Ultrasonography with Digital Subtraction Angiography

Borisch I. Ajnr: American Journal of Neuroradiology. 24(6):1117-22, 2003

Carotid Artery Imaging: Duplex US vs. MRA

Carotid Artery Imaging: Duplex US vs. MRA

Nederkoorn et al. Stroke 2003

"...MRA has a better discriminatory power compared with DUS in diagnosing 70-99% stenosis and is a sensitive and specific test compared with DSA in the evaluation of carotid artery stenosis."

So...Which Is Better? DUS vs MRA

	DUS	MRA
Determine >70% Stenosis	\checkmark	\checkmark
Determine 50-69% Stenosis	\checkmark	\checkmark
Plaque Morphology	\checkmark	Not Yet
Assess Revascularization Adequacy: CEA	\checkmark	
Assess Revascularization Adequacy: CSSA	\checkmark	

- OPhysical Examination
- Carotid Duplex Ultrasonography
- Magnetic Resonance Arteriography
- Computerized Tomographic Arteriography

CT Angiography

- New and emerging technology
- Requires intravenous iodinated contrast
- Requires significant radiation exposure
- Allows for three dimensional wide field of view
- Able to detect and characterize calcification

Cerebrovascular CT Angiography

Modern Diagnostic Algorithm for Extracranial Carotid Disease

Who Needs a Carotid Arteriogram?

- Discordance between DUS and MRA/CTA
- Poor quality DUS or MRA in patient considered for revascularization
- DUS suggestive of high grade ICA stenosis and decision to treat with CSSA
- Atypical presentation in symptomatic patients
 - ■ie FMD, Trauma