Washington TCT 2005

Meta-analysis and Late Results of Randomized Trials in Carotid Interventions

K. Mathias

Department of Radiology

Teaching Hospital of Dortmund - Germany

Presenter Disclosure Information

Name: Klaus Mathias MD.

Within the past 12 months, the presenter or their spouse/partner have had the financial interest/arrangement or affiliation with the organization listed below.

None

Actual Situation

- some single center reports
- many registries
- few trials
- very few randomized trials

Own Results with CP

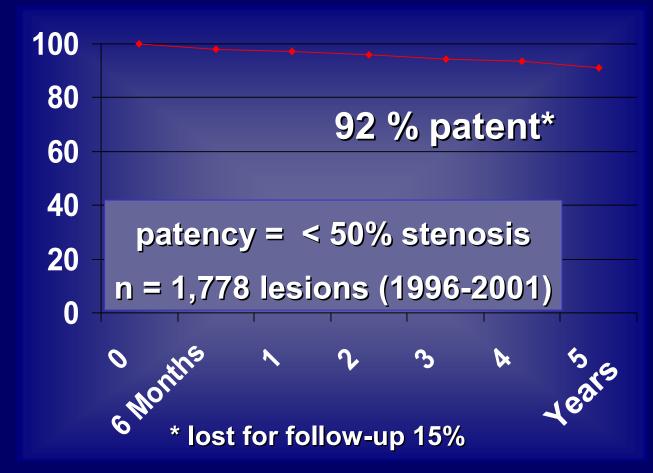
patients	1.194	
treated arteries	1.327	100.0%

no significant difference between symptomatic and asymptomatic patients

cerebral hemorrhage	1	0.1%
MI	2	0.2%
30-day mortality	1	0.1%
others (e.g. amaurosis)	6	0.6 %
Stroke & Death	18	1.4 %
Olloke & Death	10	1.7 /0

Learning Curve & Technical Development

Follow-up Findings


Follow-up Angiograms

5-Y Patency Rate*

CEA Recurrence Rate 5- 10%*

* S Rugonfalvi-Kiss et al. Stroke, 2005; 36:944-8

8 months after CEA

St. Louis Data

	CAS n=42	NASCET med	NASCET surg n=328
Any ipsilateral	9.5%	n=331 26%	9%
stroke Any	14.3%	27.6%	12.6%
Any stroke or death	19%	32.3%	15.8%

Mean follow-up 1.7 years (range 1 – 62 months): no ipsilateral strokes,

2 contra-lateral strokes

D. F. Fox et al.: Long-term outcomeafter angioplasty for symptomatic extracranial carotid stenosis in poor surgical candidates. Stroke 2002; 33: 2877-2880

Registries

Clinical Trials

Study Status	Study Design	Sample Size
ARCHER 1-3 completed	high-risk registry	581
BEACH completed	high-risk registry	480
CABERNET completed	high-risk reaistry	488
CASES enrolling	hig 15,170 tx	1,500
CREATE I+II completed	high-risk registry	579
CAPTURE enrolling	Acculink registry	1,500
MAVERIC I+II completed	high-risk registry	498
MOMA	EU registry	157
completed		

Purpose of the Clinical Trials

- Feasibility and safety of
 - stents and delivery device
 - embolic protection devices
- Clinical outcome
 - no randomization
 - success and complication rate
 - 30 day m & m rate
 - 1-y follow-up
 - Appoval of devices
 - FDA
 - EU-CE

ELOCAS*

intenton to treat	2,172	100%
technical success	2,165	99.7%
no EPD	306	14.1%
with EPD	1,859	85.9%
5-y stroke/death rate	1,356	4.1%
recurrence rate		
1-y	1,363	1.0%
3-y	480	2.0%
5-y	139	3.4%

^{*}European Long Term CAS Registry; J Cardiovasc Surg 2005;46:241-7

Prospective Randomized Studies

Randomized Clinical Trials

Study Status	Study Design	Sample Size
ACT I enrolling	asymptomatic	1,540
CAVATAS completed	sy 11,868	tx 504
CREST enrolling	symptomatic	2,500
	asymptomatic	
EVA3S enrolling	symptomatic	2,400
SAPPHIRE	high-risk	724

CAVATAS

Inclusion criteria

- symptomatic patients
- > 70% stenosis
- patients with increased risk accepted

Enrollment

1992 - 1996

504 patients randomized

M. Brown et al. Endovascular versus surgical treatment in patients with carotid stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomised trial. Lancet 2001;357:1729-37

CAVATAS

Technique

balloon angioplasty 100%

stent placement 25%

cerebral protection 0%

OTW technique device profile 7 – 9F

M. Brown et al. Endovascular versus surgical treatment in patients with carotid stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomised trial. Lancet 2001;357:1729-37

CAVATAS

Type of Procedure	Technical Success	Neurological Deficits	All Compli- cations	3-Year Patency
CAS	>95%	6.4%	10.0%	no significant
CEA	>95%	6.3%	9.9%	difference

M. Brown et al. Endovascular versus surgical treatment in patients with carotid stenosis in the Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS): a randomised trial. Lancet 2001;357:1729-37

SPACE

SPACE = Stent protected angioplasty versus carotid endarterectomy

Prospective multicenter trial

Participating centers must be certified Devices must be certified

1.800 patients will be enrolled Start March 2001 presently > 1.100 pts enrolled

SPACE

Inclusion criteria: >70% symptomatic stenosis

Primary endpoints
stroke & death in 30 days

Secondary endpoints: stroke & death after 1 year

SPACE

Preliminary results:

no statistical difference

M&M rate ~5%

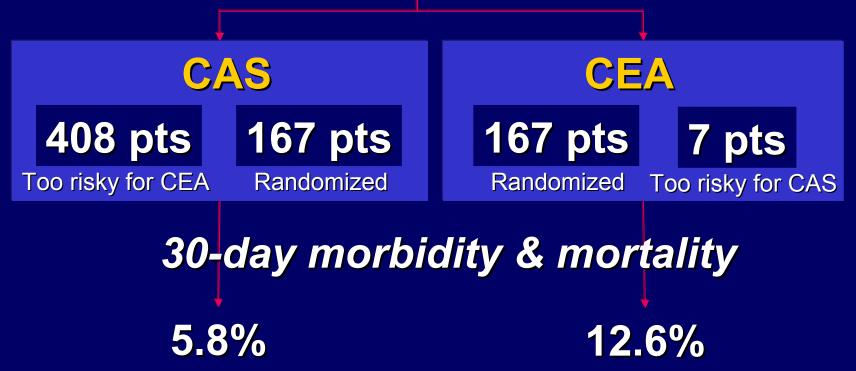
1-year patency no difference

Follow-up:

- »30-days
- »6 months
- »1 year
- »2 years
- »3 Years

Statistical Assumption

The purpose was to compare carotid stenting to CEA and to demonstrate 'non-inferiority' of stenting to CEA based on a -3% delta


Primary Endpoints

- Death, any Stroke, and MI at 30-days post-procedure
- 30 day MAE plus Death and Ipsilateral Stroke between 31-days and 12months post-procedure

Primary Endpoints

- Death, any Stroke, and MI at 30-days post-procedure
- 30 day MAE plus Death and Ipsilateral Stroke between 31-days and 12months post-procedure

723 pts with ICA stenosis

30-Day Events Symptomatic Pts

Events %	CAS 48 pts 95% CI	CEA 39 pts 95% CI	p-Value
death	0.0	5.1	0.2
stroke	2.1	7.7	0.32
major ipsilateral	0.0	0.0	
major non-ipsilateral	0.0	2.6	
minor ipsilateral	2.1	5.1	
minor non-ipsilateral	0.0	0.0	
MI	2.1	5.1	0.58
death & stroke	2.1	10.3	0.17
death & stroke & MI	4.2	15.4	0.13

Long Term Results

Recurrence rate*

CAS CEA

CAVATAS (3-y) equal SAPPHIRE (3-y) 0.7% 4.6% Dortmund (5-y) 2.1% 5.4%

*more than 50% restenosis

Comparison

	CAS	CEA
high-risk sympt. patient general medical condition	better	inferior
high-risk sympt. patient local high-risk	better	inferior
high-risk asympt. patient	no benefit	no benefit
normal-risk sympt. patient	equal	equal
normal-risk asympt. patient	equal?	benefit proven

Conclusions

- level A evidence for high-risk sympt. patient
- level B evidence for normal-risk sympt. patient

Prospective randomized trials are still running

ACT normal-risk asymptomatic

CAVATAS II normal-risk symptomatic

CREST normal-risk symptomatic

asymptomatic

EV3S normal-risk symptomatic

SPACE all-risks symptomatic

TACIT normal-risk asymptomatic

Conclusions

Highest level of evidence will be established in 2 – 5 years

The "informed" patient endangers sufficient enrollment in the trials preferring CAS