RUSH UNIVERSITY

RUSH MEDICAL COLLEGE • COLLEGE OF NURSING • COLLEGE OF HEALTH SCIENCES • THE GRADUATE COLLEGE

Treatment and Management of Venous Sinus Thrombosis

Sebastian Pollandt, MD Neurocritical Care/Epilepsy Rush University Medical Center 04/29/2016

Disclosures

- No actual or potential conflict of interest in regards to this presentation
- The planners, editors, faculty and reviewers of this activity have no relevant financial relationships to disclose.
- This presentation was created without any commercial support.

Learning Objectives

TRUSH UNIVERSITY

At the conclusion of this course participants will be able to

- Identify the epidemiology, pathophysiology and clinical features of cerebral venous sinus thrombosis (CVST)
- Analyze diagnostic modalities of CVST
- Evaluate principles of treatment of CVST

- 35 year old healthy Female delivered a healthy infant via C-section
- 3-4 days later, she developed headaches
- Another 3 days later, friends found her confused on the floor with her baby next to her
- Later in the day had a witnessed episode of generalized shaking

- Head CT at OSH shows cerebral sinus venous thrombosis
- Admitted, heparin drip started, transitioned to subcutaneous enoxaparin
- Had several odd episodes of generalized shaking while maintaining consciousness
- "Screaming in pain" with one of those episodes
- Repeat head imaging showed progression of CVST thrombosis despite anticoagulation
- Transfer to Rush

Upon arrival to Rush:

- Somnolent, but easily arousable
- Complains of severe headache
- Fully oriented
- Intact cranial nerves
- Fundoscopy shows blurred disc margins
- Full motor strength throughout
- No sensory deficit
- Heparin gtt restarted

Next day:

- More somnolent, difficult to arouse, inattentive, non-verbal
- CN intact
- All 4 extremities drift to bed when she becomes inattentive, improves when stimulated
- Consulted endovascular team
 - Severe thrombosis of all the intracranial sinuses
 - Undergoes mechanical thrombectomy and partial recanalization of all sinuses

Case – MRI brain/ HCT

Case - Hospital Course

TRUSH UNIVERSITY

- Mental status and speech slowly improve over days
- Transitioned to coumadin
- Discharged to acute rehab

3 months later:

- Doing very well
- Neurologic exam is normal
- Headaches subsided 2-3 weeks after discharge
- Continues on warfarin, INR is therapeutic
- Levetiracetam for seizures, which have not recurred

Learning Objectives

TRUSH UNIVERSITY

Epidemiology, pathophysiology and clinical features of CVST

CVST - Epidemiology

- Cerebral venous thrombosis
 - Venous sinus thrombosis
 - Cortical vein thrombosis
- Relatively rare cause of stroke (<1%)
- Annual incidence estimated 3 7 cases per million
- Comparable incidence to acute bacterial meningitis in adults
- More common among young women and children
- Can cause devastating injury to the brain, but most patients have a good prognosis if it is recognized and treated early

(1) RUSH UNIVERSITY

TRUSH UNIVERSITY

Thrombosis of the cortical veins:

- Localized vasogenic edema
- Venous infarction with cytotoxic edema
- Hemorrhage
- Symptoms:
 - Seizures
 - focal neurologic symptoms

TRUSH UNIVERSITY

Thrombosis of the large venous sinuses:

- Obstructs venous drainage
- Impaired CSF absorption through arachnoid villi
- Intracranial hypertension without hydrocephalus
- Symptoms:
 - Elevated intracranial pressure
 - Bi-hemispheric symptoms (stupor, coma)

- Multiple etiologic factors
- Usually one or more predisposing risk factors plus one inciting factor
- Thrombosis develops through common pathways of:
 - Hypercoagulability
 - Hemoconcentration
 - Direct injury or inflammation of the vessel
 - Venous stasis
- Transient and/or permanent risk factors raise suspicion for CVST and influence treatment duration

CVST - Transient Risk Factors

- Infections
 - Central nervous system (empyema, meningitis)
 - Ear, sinus, mouth, face and neck (otitis, mastoiditis, tonsillitis, stomatitis, sinusitis, cellulitis)
 - Systemic infections (sepsis, endocarditis, tuberculosis, HIV, malaria)
- Pregnancy and puerperium
- Physical precipitants
 - Head trauma
 - Lumbar puncture, myelography, intrathecal medications, spinal anesthesia
 - Radical neck surgery
 - Neurosurgical procedures
 - Jugular and subclavian catheters

CVST - Transient Risk Factors

- Drugs with prothrombotic action
 - Oral contraceptives
 - Hormone replacement therapy
 - Androgens
 - Medroxyprogesterone acetate
 - L- asparaginase
 - Cyclosporine
 - Tamoxifen
 - Steroids
 - Lithium
 - Thalidomide

- Ecstasy
- Sildenafil
- Other conditions
 - Dehydration
 - Diabetic ketoacidosis

CVST - Permanent Risk Factors

TRUSH UNIVERSITY

Prothrombotic conditions

Genetic

- Protein S, C, antithrombin deficiencies
- Factor V Leiden
- Prothrombin mutations

Acquired

- Antiphospholipid AB syndrome
- Nephrotic syndrome
- Cyanotic congenital heart disease

CVST - Permanent Risk Factors

- Malignancy
 - Central nervous system (meningioma)
 - Solid tumors outside central nervous system
 - Hematological (leukemias, lymphomas)
- Hematological condition
 - Anemias (sickle cell disease and trait, iron deficiency, folic acid deficiency)
 - Paroxysmal nocturnal hemoglobinuria
 - Polycythemia (primary or secondary)
 - Thrombocythemia (primary or secondary)

CVST - Permanent Risk Factors

- CNS disorders
 - Dural fistulae
- Inflammatory diseases
 - Behçet's disease
 - Systemic lupus erythematosus
 - Sjögren's syndrome
 - Wegener's granulomatosis
 - Temporal arteritis
 - Thromboangiitis obliterans
 - Inflammatory bowel disease
 - Sarcoidosis

- Other disorders
 - Thyroid disease
 - Hyperthyroidism
 - Hypothyroidism

CVST - Clinical Features

- Onset acute, subacute or chronic
- Headache is most common, nearly 90% of patients
- Other common presenting symptoms:
 - Focal or generalized seizure (40%)
 - Focal motor weakness (37%)
 - Encephalopathy or change in mental status (22%)
 - Vision loss (13%)
 - Diplopia (13%)
 - Stupor or coma (13%)

CVST - Clinical Features

- Papilledema in 25-30% of patients
- Thrombosis of the cavernous sinus produces a characteristic syndrome:
 - Orbital pain
 - Proptosis
 - Chemosis
 - Variable dysfunction of cranial nerves III, IV, V, and VI

Learning Objectives

TRUSH UNIVERSITY

Diagnosis of CVST

TRUSH UNIVERSITY

High degree of clinical suspicion is key to the diagnosis

- Head CT
- CT Venography (CTV)
- MRI/MRV
- Catheter Angiography (DSA)

TRUSH UNIVERSITY

Head CT

- Non-contrast head CT may be normal
- Cannot exclude a diagnosis of CVST
- Suspicious findings include:
 - Cerebral edema
 - Bilateral infarction
 - Infarction in a non-arterial distribution
 - Lobar intracerebral or subarachnoid hemorrhage
 - Hyperdense thrombosed cortical veins
 - Hyperdensities within the venous sinuses

TRUSH UNIVERSITY

CT Venography (CTV)

- Sensitivity of 95% compared with digital subtraction angiography, widely available, quick
- Less expensive than MRI
- Less invasive than conventional angiography
- Provides good visualization of the major venous sinuses
- Suboptimal for thrombosis in deep venous structures and cortical veins
- Radiation exposure and administration of intravenous contrast

TRUSH UNIVERSITY

MRI/MRV

- MRI in combination with time-of-flight or contrast enhanced MR venography (MRV) → highly sensitive for the diagnosis CVST
- Abnormal T1 and/T2 signal within the venous sinus and absence of normal flow through the venous sinus on MRV confirms the diagnosis
- Age of the thrombus determines T1 and T2 signal characteristics

TRUSH UNIVERSITY

Catheter Angiography (DSA)

- CTV or MRI/MRV is usually adequate for the diagnosis or exclusion of CSVT
- DSA may be necessary for:
 - Identification of an isolated cortical vein thrombosis without venous sinus involvement
 - Diagnosis and characterization of dural arteriovenous fistula associated with a CVST

Learning Objectives

TRUSH UNIVERSITY

Treatment of CVST

RUSH UNIVERSITY

Anticoagulation

- Cornerstone of treatment for CVST
- Prevent extension of the thrombosis and support spontaneous thrombus resolution
- Indicated even in the presence of intracranial hemorrhage

TRUSH UNIVERSITY

Original Contributions

Randomized, Placebo-Controlled Trial of Anticoagulant Treatment With Low-Molecular-Weight Heparin for Cerebral Sinus Thrombosis

S.F.T.M. de Bruijn, MD; J. Stam, MD; for the Cerebral Venous Sinus Thrombosis Study Group

"no new symptomatic cerebral hemorrhages.
Anticoagulation proved safe, even in patients with cerebral hemorrhage"

Lancet. 1991 Sep 7;338(8767):597-600.

Heparin treatment in sinus venous thrombosis.

Einhäupl KM1, Villringer A, Meister W, Mehraein S, Garner C, Pellkofer M, Haberl RL, Pfister HW, Schmiedek P.

Author information

Patients with ICH and CVST:

27 treated with IV heparin, 4 died (mortality 15%)

13 not treated with heparin, 9 died (mortality 69%)

"ICH is not a contraindication to heparin treatment"

TRUSH UNIVERSITY

American Heart Association recommendations:

"...initial anticoagulation with adjusted-dose UFH or weight-based LMWH in full anticoagulant doses is reasonable, followed by vitamin K antagonists, regardless of the presence of ICH"

(Class IIa; Level of Evidence B)

"Continuation of oral anticoagulation with vitamin-K antagonists is reasonable for 3-6 months followed by antiplatelet therapy"

(Class IIa, Level B)

• Essentially identical recommendations from (now defunct) European Federation of Neurological Societies

Thrombolytics and Endovascular Treatment Options

- Numerous case reports using localized thrombolytics and mechanical clot disruption
- No controlled trials to establish efficacy or safety of these therapies
- Appropriate agent, dose, route of administration and clinical situation have yet to be defined
- Increased risk of intracranial hemorrhage is most commonly reported complication
- Thrombolytic and endovascular treatment should be limited to select patients who decline despite anticoagulation
- Should be performed only in centers with sufficient expertise in neuroendovascular interventions

TRUSH UNIVERSITY

Seizures

- Most common in patients with
 - Focal edema
 - Venous infarcts
 - Intracranial hemorrhage
- Prophylactic anticonvulsants may be considered
- Duration of treatment depends on:
 - Seizure recurrence (unprovoked, 5% to 32% of patients)
 - EEG findings in follow-up
 - Tolerability of antiseizure drugs

Intracranial Pressure

- Intracranial hemorrhage, edema and infarction lead to localized mass effect
- Venous outflow impairment causes decreased CSF reabsorption, communicating hydrocephalus and intracranial hypertension
- Hyperosmolar therapy (mannitol, hypertonic saline) should be administered to patients at risk for cerebral herniation
- Acetazolamide is reasonable to reduce CSF production
- CSF diversion (lumbar puncture, ventriculostomy) or optic nerve decompression can be effective if there is progressive visual loss
- Resection of hemorrhagic infarction or decompressive craniectomy may be required
- Anticoagulation should be resumed as soon as possible following surgical intervention

CVST - Outcome

- Recanalization
 - At 3 months \rightarrow 84%
 - At 1 year \rightarrow 85%
 - Highest recanalization rates in deep cerebral veins and cavernous sinus thrombosis, lowest in lateral sinus thrombosis
- In adults, recanalization of the occluded sinus is not related to outcome

CVST - Outcome

- 3% to 15% of patients die in the acute phase
- Patients at risk:
 - Depressed consciousness
 - Altered mental status
 - Thrombosis of the deep venous system
 - Right hemisphere hemorrhage
 - Posterior fossa lesions.
- Main cause of acute death with CVT is transtentorial herniation due to large hemorrhagic lesion
- Second is herniation due to multiple lesions or to diffuse brain edema.
- Status epilepticus, medical complications, and PE are other causes

CVST - Outcome

- 79% of patients will have complete recovery
- 9.7% are functionally dependent (mRS 3 or greater)
- 50% of survivors feel depressed or anxious, minor cognitive or language deficits may preclude them from resuming previous jobs
- Abulia, executive deficits, and amnesia → result from thrombosis of the deep venous system, with bilateral panthalamic infarcts
- Memory deficits, behavioral problems, or executive deficits may persist

CVST

TRUSH UNIVERSITY

Questions?