Cryptogenic stroke vs. PFO Stroke? Neurology perspectives

David Thaler, MD, PhD, FAHA
Director, The Comprehensive Stroke Center at
Tufts Medical Center

Tufts Medical Center

Disclosure Statement of Financial Interest

Within the past 12 months, I have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Research Support for clinical trial
- Research Support for clinical trial
- Consulting Fees for RESPECT Steering Committee
- Grant Support for RoPE Study

Company

- WL Gore Associates
- St. Jude Medical
- St. Jude Medical
- NINDS (NIH)

Points of agreement

- PFO is common in the general population
- PFO is causally related to stroke, probably via paradoxical embolism
- Not all discovered PFOs in stroke patients are pathogenic
- Not all discovered PFOs in cryptogenic stroke patients are pathogenic
- Closing incidental PFOs is not likely to offer benefit
- For any treatment the benefit (reduced stroke) must outweigh the risks (hemorrhage, procedural complications, late device complications) in a medically meaningful way

We need to identify factors that:

1) Predict that the PFO is pathogenic and
2) Predict the risk of recurrence of $C S$

-4 FHE Medical

Cryptogenic stroke with PFO

$$
\neq
$$

Paradoxical embolism

We believe that paradoxical embolism is related to stroke because PFO is over-represented in populations of CS v stroke of known cause

BUT

Are there patient-level variables that predict PFO from within the CS population?

Support for diagnosis of paradoxical embolism

Thrombus in PFO

Suggested predictors of pathogenic PFO

- Cryptogenic stroke
- Absence of conventional vascular RFs
- Young age
- Prior immobility (eg airplane travel)
- Valsalva at onset
- Associated features
- Atrial septal aneurysm
- Shunt at rest
- Size of shunt

Predictors of pathogenic PFO \neq predictors of recurrence

-Gryptogenic stroke
-Absence of conventional vascular RFs
-Young age
-?? Prior immobility (eg airplane travel)
-?? Valsalva at onset

- ?? Associated features
- Atrial septal aneurysm
- Shunt at rest
- Size of shunt
- Precurrence = chronic stroke seen on imaging at the time of the index event (surrogate for recurrent stroke)
- Provoked paradoxical embolism = CS+PFO in the setting of 1) Immobility/DVT, 2) Valsalva, or 3) Both

r1fa Medical

Table 1 Descriptive characteristics of subjects included in the Tufts PFO Registry

Neurology 2012 78:993-997

Baseline variables in the Tufts PFO
Registry ($\mathrm{n}=224$)

Men, n (\%)	127 (57)
Age, y, mean (SD)	52.3 (14.3)

Clinical conditions for provoked paradoxical embolism, n (\%)
Prothrombotic conditions 83 (37)

Concurrent deep vein thrombosis 13 (6)
Prolonged immobility or 73 (33) postoperative period

Valsalva maneuver 60 (27)
Either prothrombotic conditions or 121 (54)
Valsalva maneuver
Both prothrombotic conditions and
22 (10)

Proportion of CS patients with incidental PFO

Case A
 Proportion of CS patients with PFO: 40\%
 Proportion of controls with PFO: 25\%

Probability PFO is incidental in CS cases $=$
Prevalence of PFO in controls*(1-Prevalence of PFO in CS cases)
Prevalence of PFO in CS cases*(1-Prevalence of PFO in controls)

Alsheikh-Ali, A. A. et al. Stroke 2009;40:2349-2355

Risk of Paradoxical Embolism (RoPE) Study NINDS R01 NS062153-01

RoPE Study premise:

PFO closure can only benefit patients with a high
"PFO attributable recurrence risk"

$$
=
$$

Likelihood of pathogenic PFO x recurrence risk

Attributable fraction

While it is rarely possible to establish in an individual patient whether a PFO discovered in a CS patient is incidental or pathogenic, one can estimate the attributable fraction using Bayes' theorem

Attributable fraction

So, the attributable fraction is dependent on the excess prevalence of PFO in the CS population.

BUT (!)

PFO prevalence among CS patients varies based on other characteristics

Risk of Paradoxical Embolism (RoPE) Study

1. To build the largest database of CS using existing cohort studies of patients with CS studied with TEE, both with and without PFO.
2. Model 1: Characteristics that predict PFO
3. Model 2: Characteristics that predict recurrent CS
4. Combine Models 1 \& 2: Characteristics that predict PFO-related recurrence
5. Validation of the combined model on clinical trial populations (CLOSURE I, RESPECT, PC-Trial, REDUCE)

Methods - 9 steps to the RoPE database

1. Selected published and unpublished data bases
2. Developed a collaborative team of international investigators
3. Determined availability and characteristics of data in each data base
4. Specified dependent variables
5. Determined and specified the independent variables
6. Specified inclusion/exclusion criteria for data base inclusion
7. Added new data bases if discovered and suitable
8. Acquired new primary data (re-read MRI, TEE, etc)
9. Checked for "missingness" and consistency of effects

Results: Component databases

	Database	Collaborator(s)	
	CODICIA	Joaquin Serena	
	French PFO/ASA	Jean-Louis Mas	
	APRIS	Marco DiTullio	
	Bern (published)	Krassen Nedeltchev, Marie-Luise Mono	
	Bern (unpublished)	Heinrich Mattle	
	PICSS	Shunichi Homma	
	Lausanne	Patrik Michel	
	Toronto	Cheryl Jaigobin	
	Sapienza	Emanuele Di Angelantonio, Federica Papetti	
	Tufts	David Thaler	
	German	Christian Weimar	
	NOMASS	Mitchell Elkind	
RoPE			"ufts Medical

Results: Clinical Variables

- Age (at time of stroke)
- Gender
- Sex
- Race
- Coronary artery disease
- Diabetes
- Hypertension
- Hyperlipidemia
- Prior spells: number, date(s), event(s)
- Smoking status: current
- Medication at time of spell: Statin

Antiplatelet
Anticoagulant OCP/HRT

- Index event: date

Results: Neuroradiological variables

1. Index stroke seen: yes, no
2. Location:
3. Size:
4. Multiple:
5. Prior stroke:
superficial, deep
large, small
yes, no
yes, no

- 1 Ga Medical

LUT Medica

Results: Echocardiographic variables

1. Mobility of septum
2. PFO size
3. Shunt at rest
hypermobile (ASA), normal
large, small
yes, no

Results: PFO prevalence by site according to RoPE PFO definition

RoPE
Table 1. Prevalence of each variable by database.

- Hac Medical

Results: Outcomes

		Before Adjudication			
		Total	Stroke	TIA	Death
	APRIS	21	9		12
	Bern (pub)	25	7	14	4
	CODICIA	40	10	18	12
	French PFO/ASA	42	23	13	6
	Lausanne	5	2	2	1
	PICSS	47	24	14	9
	Tufts	9	7	1	1
	German	133	61	43	29
RoPE	Total	322	143	105	74

Tufts ${ }_{\text {Medical }}^{\text {Cenier }}$

Model 1: "PFO propensity"

RoPE

Generalized linear models to develop an index estimating PFO prevalence conditional on patient characteristics.

Bayes' theorem transforms the stratum-specific PFO prevalence to a stratum-specific estimate of PFOattributable fraction.

Model Assumptions

1) If not for those strokes that are PFO-attributable, the probability of a PFO in a CS patient would be the same as in the general population (controls)
2) The rate of PFO-attributable strokes in PFO-negative CS patients is near-zero
3) PFO prevalence is unrelated to patient characteristics in the general population (i.e. control rate is constant)

Database	\# of subjects	\# w/ PFO	\# w/o PFO
APRIS ${ }^{27}$ *	90	19	71
CODICIA ${ }^{28}$	485	300	185
French PFO-ASA ${ }^{29}$	581	267	314
German ${ }^{30}$	1122	376	746
Lausanne	92	58	34
NOMASS ${ }^{31}$	60	23	37
PICSS ${ }^{32}$ *	250	98	152
Sapienza ${ }^{33 *}$	$343^{\text {8 }}$	$133{ }^{\text {s }}$	210
Bern (published) ${ }^{34}$	159	159	0
Bern (unpublished)	249	249	0
Toronto ${ }^{35}$	121	121	0
Tufts ${ }^{36}$	122	122	0

Model 1: Clinical variables

Consistency Across Sites of Relationship of Gender (Male v. Female) and Odds of having a PFO

* adjusted odds ratios (and 95\% confidence intervals) for each site, and pooled across sites, are shown as blue diamonds and black whiskers

Odds Ratio (OR) for
Malaveifaical
-UftS Center

Consistency Across Sites of Relationship of Age and Odds of having a PFO

Consistency Across Sites of Relationship of Diabetes and Odds of having a PFO

Odds Ratio (OR) for
DM (vs. no DM)

In cases with DM, PFO is
less likely $(O R<1)$
In cases with DM, PFO is more likely ($O R>1$)

Consistency Across Sites of Relationship of Hypertension and Odds of having a PFO

Odds Ratio (OR) for HTN (vs. no HTN)

Consistency Across Sites of Relationship of Smoking and Odds of having a PFO

* adjusted odds ratios (and 95\% confidence intervals) for each site, and pooled across sites, are shown as blue diamonds and black whiskers

Odds Ratio (OR) for Current Smoking (vs. not)

Consistency Across Sites of Relationship of History of Stroke or TIA and Odds of having a PFO*

* adjusted odds ratios (and 95\% confidence intervals) for each site, and pooled across sites, are shown as blue diamonds and black whiskers

Odds Ratio (OR) for History of Stroke or TIA (vs. not)

Clinical variables: Findings \& Results

- Subjects were significantly more likely to have a PFO if they had:
- Younger age
- No DM
- No HTN
- No smoking
- No prior h/o stroke/TIA
- A trend to more likely to have a PFO if they had:
- No hyperlipidemia
- No CAD
- No statin use at time of index event
- No antiplatelet use at time of index event
- There was no effect of:
- Gender
- Race

Model 1: Neuroradiological variables

Consistency Across Sites of Relationship of Having Stroke Seen (per radiology) and Odds of having a PFO*

*Age adjusted odds ratios (and 95\% confidence intervals) for each site, and pooled across sites, are shown as blue diamonds and black whiskers

Consistency Across Sites of Relationship of Superficial vs. Deep (per radiology) and Odds of having a PFO*

*Age adjusted odds ratios (and 95\% confidence intervals) for each site, and pooled across sites, are shown as blue diamonds and black whiskers

Consistency Across Sites of Relationship of Large vs. Small/not seen (per radiology) and Odds of having a PFO*

*Age adjusted odds ratios (and 95\% confidence intervals) for each site, and pooled across sites, are shown as blue diamonds and black whiskers

Consistency Across Sites of Relationship of Multiple vs. Single/not

 seen (per radiology) and Odds of having a PFO**Age adjusted odds ratios (and 95\% confidence intervals) for each site, and pooled across sites, are shown as blue diamonds and black whiskers

Consistency Across Sites of Relationship of Prior Stroke (per radiology) and Odds of having a PFO*

*Age adjusted odds ratios (and 95\% confidence intervals) for each site, and pooled across sites, are shown as blue diamonds and black whiskers

Neuroradiological variables: Findings \& Results

- Subjects were significantly more likely to have a PFO if they had:
- An index stroke seen on neuroimaging
- A large stroke
- A superficial stroke
- A trend to more likely to have a PFO if they had:
- No prior (i.e. chronic) infarct seen
- There was no effect of:
- Multiple v single infarcts

		$\begin{gathered} \text { PFO } \\ (\mathrm{n}=1274) \end{gathered}$	$\begin{aligned} & \hline \text { Non-PFO } \\ & (\mathrm{n}=1749) \\ & \hline \end{aligned}$	P-value
	Patient Characteristics			
	Male	58.9\% (751/1274)	59.3\% (1038/1749)	0.8251
	Age over 65	21.5\% (274/1274)	35.9% (627/1748)	<. 0001
	White	86.1\% (515/598)	79.3\% (649/818)	0.0010
	Diabetes	8.9\% (113/1269)	18.6\% (325/1746)	<. 0001
	Coronary artery disease	6.7\% (67/1005)	12.0\% (172/1434)	<. 0001
	Hypertension	32.7% (415/1271)	53.2\% (927/1744)	<. 0001
	Hypercholesterolemia	22.5\% (195/866)	30.6\% (425/1387)	<. 0001
	Current smoker	32.5\% (410/1263)	36.0% (622/1727)	0.0435
	History of stroke/TIA	11.9\% (151/1270)	18.0\% (314/1740)	<. 0001
	Radiology Variables			
	Prior stroke, \% yes	22.6\% (196/867)	31.1\% (396/1272)	<. 0001
	Number of lesions	$\mathrm{N}=901$	$\mathrm{N}=1261$	0.3255
	- Multiple	13.3\% (120)	12.5\% (158)	
	- Not multiple	72.5\% (653)	75.2\% (948)	
	- TIA	14.2\% (128)	12.3\% (155)	
	Size	$\mathrm{N}=930$	$\mathrm{N}=1324$	0.0189
	- Large	59.1\% (550)	55.9\% (740)	
	- Not large	27.1\% (252)	32.4\% (429)	
	- TIA	13.8\% (128)	11.7\% (155)	
	Location	$\mathrm{N}=907$	$\mathrm{N}=1173$	<. 0001
	- Superficial	54.1\% (491)	44.9\% (527)	
	- Deep	31.8\% (288)	41.9\% (491)	
	-TIA	14.1\% (128)	13.2\% (155)	

RoPE - Model 1 - "Pathogenic PFO"

Term in Model	OR	$(95 \%$ CI for OR)	p-value
Age (per 10 year increase)	0.72	$(0.67$ to 0.77$)$	$<.0001$

The RoPE Score

	Points are subtracted from 10 for each risk factor: - A patient less than 30 years with no risk factors has a score of 10 ; - A patient ≥ 70 years with all 5 risk factors has a score of 0	SCORE
	Maximum Score:	10
	Risk Factor Count (0 to 5 points):	-
	Hypertension (1)	
	Diabetes (1)	
	Prior Stroke or TIA (1)	
	Current Smoker (1)	
	Absence of visible cortical infarct on CT or MRI (1)	
	Age (0 to 5 points):	-
	<30 years (0)	
	30 to 39 years (1)	
	40 to 49 years (2)	
	50 to 59 years (3)	
\cdots	60 to 69 years (4)	
	≥ 70 years (5)	
	Total Score =	

RoPE Score distribution and PFO prevalence

POINT
SCORE
$0-3$
4
5
6
7
8
$9-10$

A.	Cryptogenic Stroke (N=3023)	
Number of Patients	Prevalence of Patients with a PFO $\%(95 \%$ CI*)	PFO-Attributable Fraction $\%(95 \%$ CI*)
613	$23 \%(19 \%$ to $26 \%)$	$0 \%(0 \%$ to $4 \%)$
511	$35 \%(31 \%$ to $39 \%)$	$38 \%(25 \%$ to $48 \%)$
516	$34 \%(30 \%$ to $38 \%)$	$34 \%(21 \%$ to $45 \%)$
482	$47 \%(42 \%$ to $51 \%)$	$62 \%(54 \%$ to $68 \%)$
434	$54 \%(49 \%$ to $59 \%)$	$72 \%(66 \%$ to $76 \%)$
287	$67 \%(62 \%$ to $73 \%)$	$84 \%(79 \%$ to $87 \%)$
180	$73 \%(66 \%$ to $79 \%)$	$88 \%(83 \%$ to $91 \%)$

RoPE Scores and Recurrence rates

POINT
SCORE
$0-3$
4
5
6
7
8
$9-10$

A.	Cryptogenic Stroke (N=3023)	
Number of Patients	Prevalence of Patients with a PFO $\%\left(95 \% I^{*}\right)$	PFO-Attributable Fraction $\%(95 \%$ CI*)
613	$23 \%(19 \%$ to $26 \%)$	$0 \%(0 \%$ to $4 \%)$
511	$35 \%(31 \%$ to $39 \%)$	$38 \%(25 \%$ to $48 \%)$
516	$34 \%(30 \%$ to $38 \%)$	$34 \%(21 \%$ to $45 \%)$
482	$47 \%(42 \%$ to $51 \%)$	$62 \%(54 \%$ to $68 \%)$
434	$54 \%(49 \%$ to $59 \%)$	$72 \%(66 \%$ to $76 \%)$
287	$67 \%(62 \%$ to $73 \%)$	$84 \%(79 \%$ to $87 \%)$
180	$73 \%(66 \%$ to $79 \%)$	$88 \%(83 \%$ to $91 \%)$

B.	CS Patients with PFO (N=1324)
\# CS patients with PFO*	Estimated Two Year Survival/TIA Recurrence Rate (Kaplan-Meier, with 95% CI $)$
108	$20 \%(12 \%$ to $28 \%)$
148	$12 \%(6 \%$ to $18 \%)$
186	$7 \%(3 \%$ to $11 \%)$
236	$8 \%(4 \%$ to $12 \%)$
263	$6 \%(2 \%$ to $10 \%)$
233	$6 \%(2 \%$ to $10 \%)$
150	$2 \%(0 \%$ to $4 \%)$

RoPE

RoPE Scores and Recurrence rates for those <60y

Appendix 5: For Subset Under Age 60, PFO prevalence, attributable fraction and estimated two year risk of stroke/TIA by point score strata, using control rate of 25%.

POINT SCORE	A. Cryptogenic Stroke $(\mathbf{N}=1809)$			B. \quadCS Patients with PFO $(\mathbf{N}=981)$	
	Number of Patients	Prevalence of Patients with a PFO \% (95\% CI*)	PFO-Attributable Fraction, \% (95\% CI*)	\# CS patients with PFO*	Estimated Two Year Survival/TIA Recurrence Rate (Kaplan-Meier, with 95\% CI)
0-3	41	24% (11\% to 38\%)	0\% (0\% to 45\%)	8	0\%
4	132	28\% (20% to 36%)	14% (0\% to 40\%)	25	5% (0\% to 15%)
5	301	28\% (23% to 33\%)	15% (0\% to 33\%)	97	7% (3% to 12%)
6	434	46% (42\% to 51\%)	61\% (53\% to 68\%)	205	8% (4\% to 12\%)
7	434	54\% (49\% to 59\%)	72\% (66\% to 76\%)	263	6% (2% to 10%)
8	287	67\% (62\% to 73\%)	84\% (79\% to 87\%)	233	6\% (2% to 10%)
9-10	180	73% (66\% to 79\%)	88\% (83\% to 91\%)	150	2% (0\% to 4\%)

*Note: 95% CI for PFO prevalence based on normal approximation to the binomial distribution. Attributable risk and 95% CI for Atributable risk based on PFO prevalence and 95\% CI for that estimate.!

RoPE Conclusions (so far)

- Among patients with CS, there is considerable variation in PFO prevalence based on easily obtainable clinical characteristics, with large subgroups varying from $\sim 20 \%$ to $>70 \%$.
- This prevalence suggests stratum-specific (i.e. RoPE Scores) attributable fractions that range from 0% to 90% among patients with CS and PFO.
- Among patients with PFO, stroke recurrence rates are highest in the stratum least likely to have a PFO-attributable CS, and lowest in the stratum most likely to have a PFO-attributable CS.

Future Work

- More work is needed to identify those patients with PFOattributable CS that are most likely to recur.
- Nota bene:
- None of these data address "high risk" echo characteristics
- Early looks at Model 2 suggest we might be WRONG about what constitutes high risk

Final thought

"Science is the great antidote to the poison of enthusiasm and superstition."

Adam Smith, The Wealth of Nations, 1776

Acknowledgments

Boston RoPE Team

Jennifer Donovan
Marcia Landa
Robin Ruthazer
John Griffith
Morgan Clark-Coller
Cardiology
Jeffrey Kuvin Jon Finley Jessica Haffajee
Erica Brooks
Neuroradiology
Josh Kornbluth
Ed Feldmann

RoPE Study Group

Emanuele Di Angelantonio
Marco DiTullio
Mitchell Elkind
Shunichi Homma
Cheryl Jaigobin
David Kent (Principle Investigator)
Jean-Louis Mas
Heinrich Mattle
Patrik Michel
Marie-Luise Mono
Krassen Nedeltchev
Celine Odier
Federica Papetti
Joaquin Serena
David Thaler
Christian Weimar

