Atherosclerotic Carotid Bifurcation Stenosis: Primary and Secondary Prevention Strategies

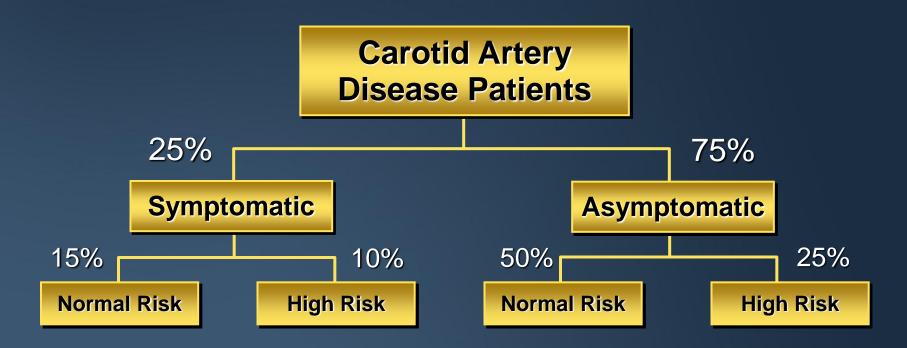
William A. Gray MD Associate Professor of Medicine Director of Endovascular Services Columbia University Medical Center The Cardiovascular Research Foundation

Faculty Disclosure William A. Gray, MD

- For the 12 months preceding this CME activity, I disclose the following types of financial relationships:
- Honoraria received from and consulted for:
- Abbott Vascular
- Cook
- Medtronic
- Medrad/Possis
- WL Gore

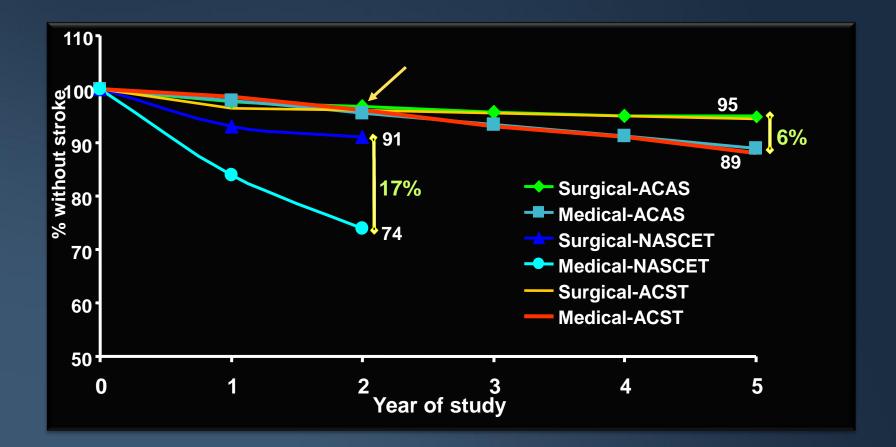
Boston Scientific Cordis/Johnson & Johnson

Faculty Disclosure (continued)

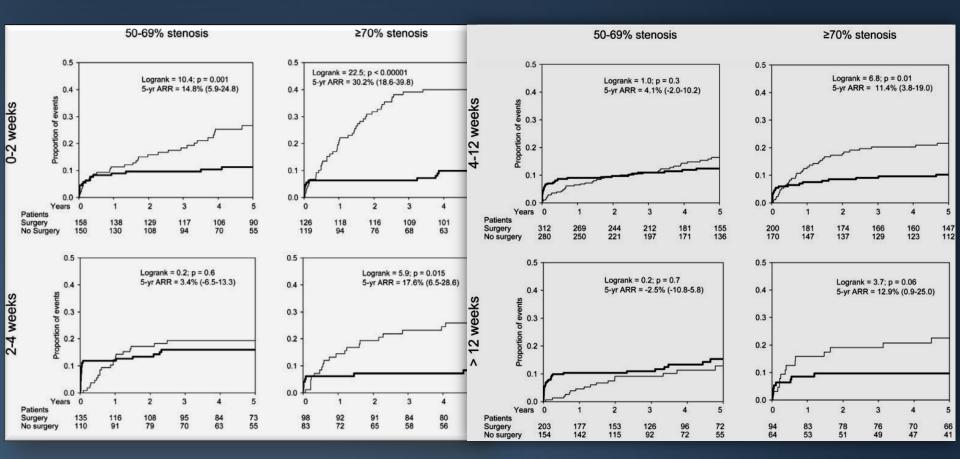

• William A. Gray, MD

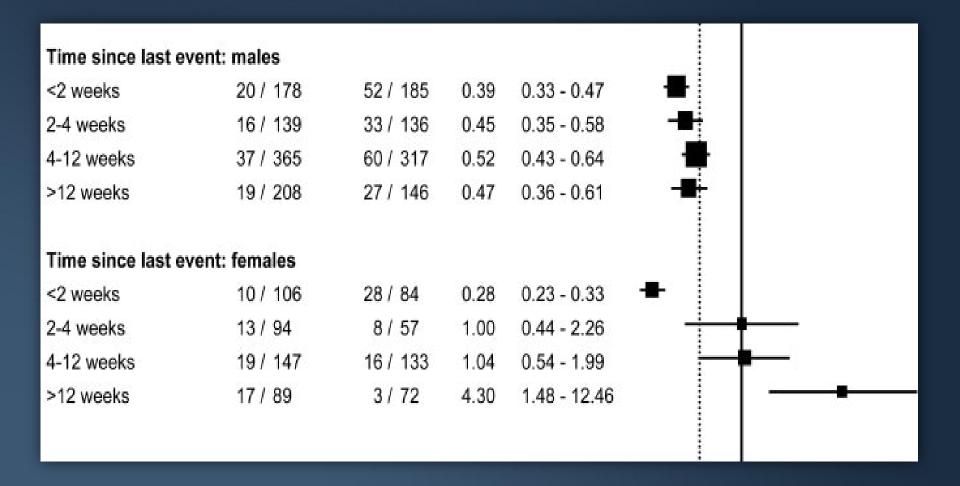
- Held common stock in:
 - Biocardia
 - Contego
- Research, clinical trial, or drug study funds received from:
 - Abbott Vascular
 - Cordis/Johnson & Johnson
 - Medtronic
- I will be discussing products that are investigational or not labeled for use under discussion.

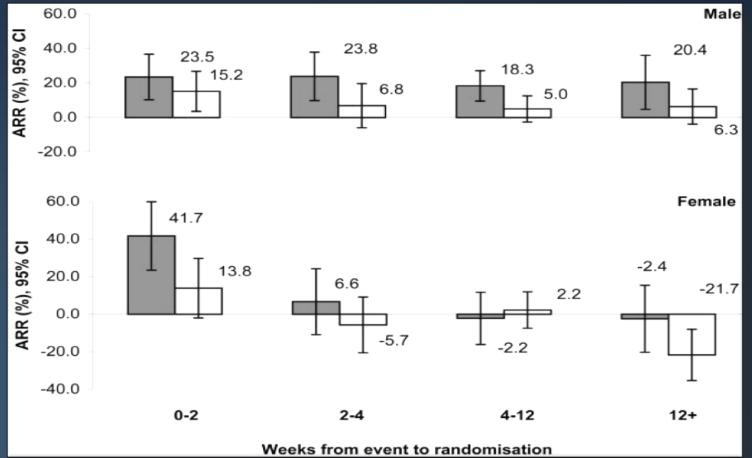
US population distribution of carotid disease intervention



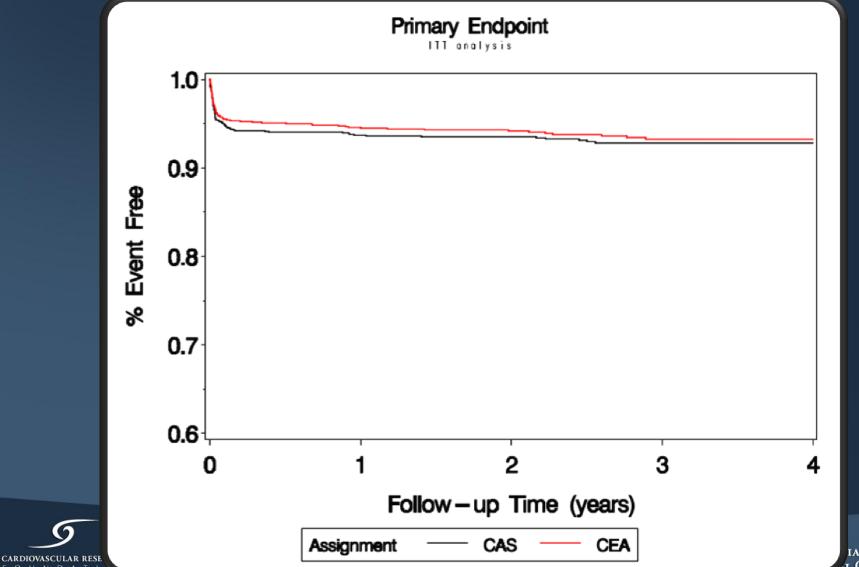
Data establishing revascularization as standard of care for secondary prevention in symptomatic patients


NASCET: Profound benefit of CEA in symptomatic patients

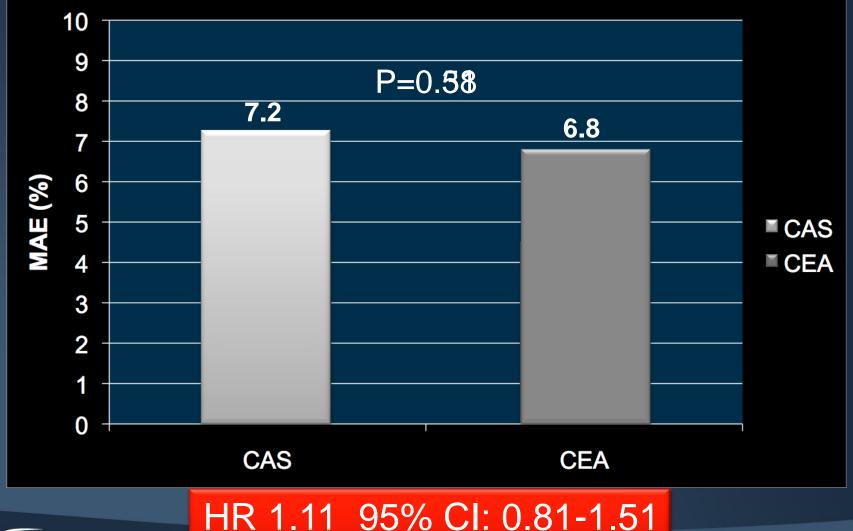

Benefit of CEA decreases with time from event


Effect of CEA timing especially pronounced in females

Sex, stenosis and time to CEA all influence benefit of CEA



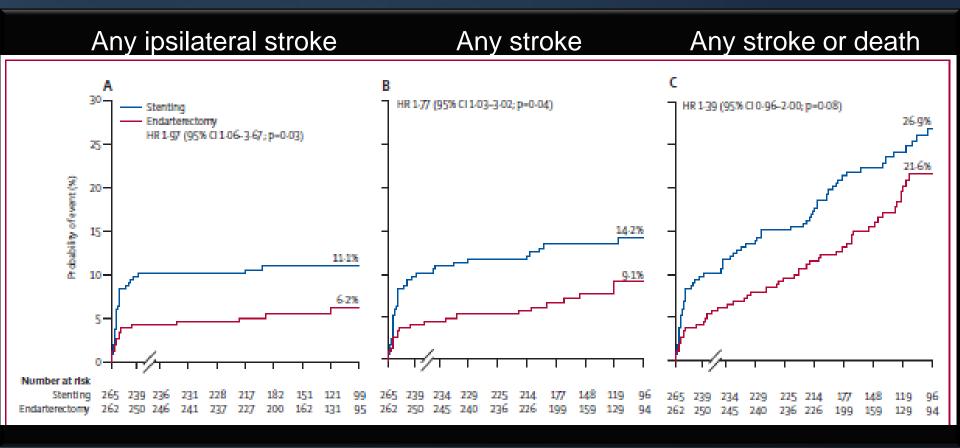
Choice of CEA and CAS


Stroke prevention efficacy equal between CAS and CEA in CREST

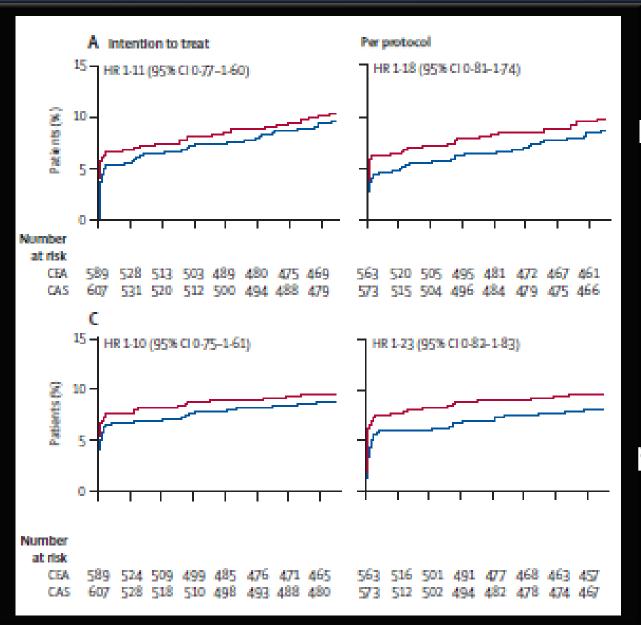
FOUNDA

IA UNIVERSITY L CENTER

PrirPeripproceduiral outcomes (D/S/MI)2.5)


End Point	Periprocedural Period							
	CAS	CEA	Absolute Treatment Effect of CAS vs. CEA (95% CI)		P Value			
	no. of patier	nts (% ±SE)	percentage points					
Myocardial infarction								
Asymptomatic patients	7 (1.2±0.4)	13 (2.2±0.6)	-1.0 (-2.5 to 0.4)	0.55 (0.22 to 1.38)	0.20			
Symptomatic patients	7 (1.0±0.4)	15 (2.3 ±0.6)	-1.2 (-2.6 to 0.1)	0.45 (0.18 to 1.11)	0.08			
Any periprocedural stroke or postprocedural ipsilateral stroke								
Asymptomatic patients	15 (2.5±0.6)	8 (1.4±0.5)	1.2 (-0.4 to 2.7)	1.88 (0.79 to 4.42)	0.15			
Symptomatic patients	37 (5.5±0.9)	21 (3.2±0.7)	2.3 (0.1 to 4.5)	1.74 (1.02 to 2.98)	0.04			
Any periproced ural stroke or death or postprocedural ipsilateral stroke								
Asymptomatic patients	15 (2.5±0.6)	8 (1.4±0.5)	1.2 (-0.4 to 2.7)	1.88 (0.79 to 4.42)	0.15			
Symptomatic patients	40 (6.0±0.9)	21 (3.2±0.7)	2.8 (0.5 to 5.0)	1.89 (1.11 to 3.21)	0.02			
Primary end point (any peripro- cedural stroke, myocar- dial infarction, or death or postprocedural ipsi- lateral stroke)								
Asymptomatic patients	21 (3.5±0.8)	21 (3.6±0.8)	0.0 (-2.2 to 2.1)	1.02 (0.55 to 1.86)	0.96			
Symptomatic patients	45 (6.7±1.0)	35 (5.4±0.9)	1.4 (-1.2 to 3.9)	1.26 (0.81 to 1.96)	0.30			

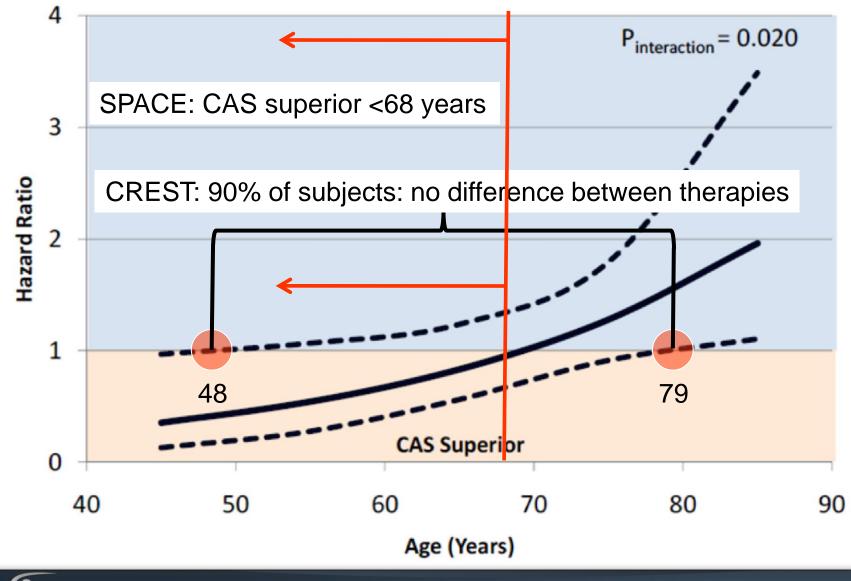
Long-term outcomes for both CEA and CAS


Stroke prevention efficacy equal between CEA and CAS EVA-3S: 4-year outcomes

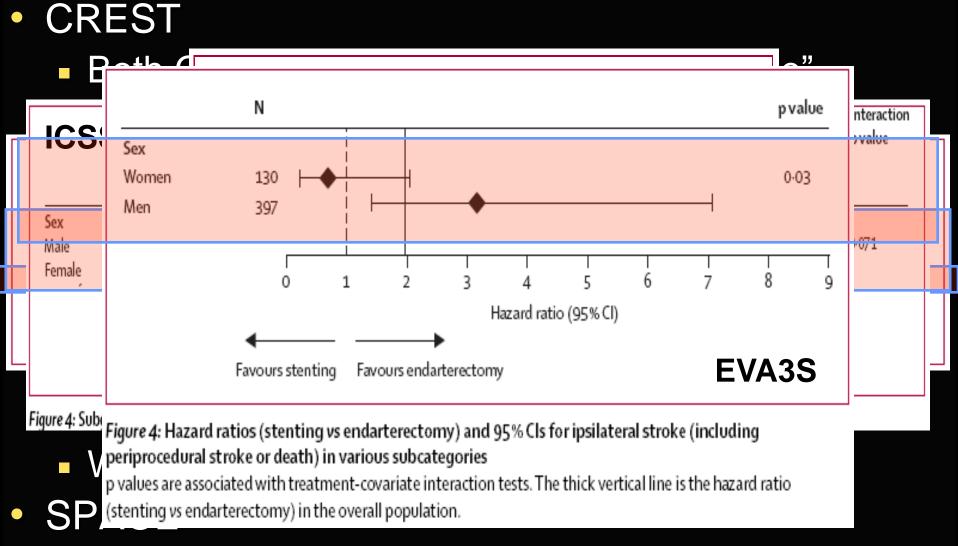
Stroke prevention efficacy equal between CEA and CAS SPACE: K-M plots of 2-year outcomes

psilateral stroke and vascular death

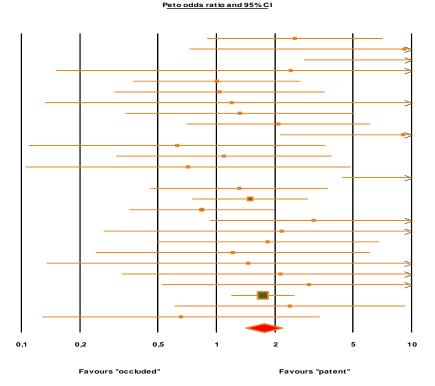
30-day stroke/death plus ipsilateral stroke to 2 years



Examine randomized data on patient cohorts favoring specific revascularization


Age differential: Similarity among trials

What does CREST, and other trials, tell us about CAS in standard risk patients?



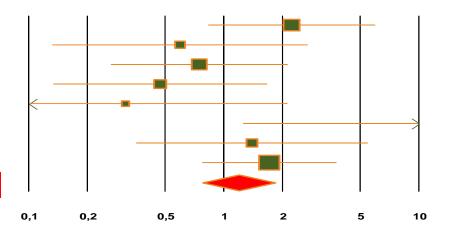
CAS better in younger (<68 years)

Poor outcomes with contralateral carotid occlusion and CEA

30-day any stroke or death after CEA with/without contralat. occlusion

Study name	Statistics for each study							
0	Peto dds ratio	Lower limit	Upper limit	Z-Value	p-Value			
Lees 1981	2,523	0,890	7,155	1,740	0,082			
Hertzer 1982	9,183	0,723	116,664	1,710	0,087			
Peitzman 1982	32,139	2,787	370,675	2,781	0,005			
Takolander 1983	2,404	0,149	38,720	0,619	0,536			
Sachs 1984	1,005	0,372	2,715	0,010	0,992			
Moore 1984	1,037	0,298	3,611	0,057	0,954			
Nunn 1988	1,197	0,131	10,899	0,159	0,873			
Mackey 1990	1,318	0,340	5,118	0,399	0,690			
EC ST 1991	2,077	0,700	6,162	1,317	0,188			
NASCET 1991	9,061	2,106	38,978	2,961	0,003			
Perler 1992	0,629	0,109	3,626	-0,519	0,604			
Mattos 1992	1,093	0,305	3,923	0,137	0,891			
Jansen 1993	0,716	0,104	4,909	-0,340	0,734			
Sandmann 1993	17,782	4,385	72,108	4,029	0,000			
Goldstein 1994	1,310	0,457	3,753	0,503	0,615			
Riles 1994	1,489	0,748	2,966	1,133	0,257			
Lacroix 1994	0,842	0,356	1,994	-0,391	0,696			
da Silva 1996	3,152	0,921	10,784	1,829	0,067			
Aungst1998	2,162	0,263	17,793	0,717	0,473			
Locati 2000	1,832	0,491	6,839	0,901	0,367			
AbuRahma 2000	1,212	0,239	6,142	0,232	0,816			
Jordan 2002	1,454	0,134	15,764	0,308	0,758			
Pulli 2002	2,130	0,326	13,935	0,789	0,430			
Balotta 2002	2,981	0,522	17,034	1,228	0,219			
Tu 2003	1,730	1,184	2,529	2,830	0,005			
Domenig 2003	2,380	0,605	9,358	1,241	0,215			
Grego 2005	0,658	0,127	3,407	-0,499	0,618			
	1,741	1,404	2,158	5,055	0,000			

Fixed effects model, no sig. heterogeneity; p = 0.128


Meta-analysis of Randomized Trials Comparing Carotid Endarterectomy HOVASCULAR RESAND Endovascular Treatment T. Luebke, M. Aleksic, J. Brunkwall EJV

No differential in outcomes with contralateral carotid occlusion and CAS

30-day any stroke or death after CAS with/without contralat. occlusion

Study name	Statistics for each study							
	Peto odds ratio	Lower limit	Upper limit	Z-Value	p-Value			
McKevitt 2004	2,228	0,826	6,011	1,581	0,114			
Reimers 2004	0,597	0,131	2,713	-0,668	0,504			
Sabeti 2004	0,749	0,262	2,141	-0,539	0,590			
Hofmann 2006	0,473	0,133	1,681	-1,158	0,247			
Mas 2006	0,314	0,046	2,136	-1,185	0,236			
Safian 2006	20,697	1,247	343,502	2,114	0,035			
Verzini 2006	1,395	0,353	5,505	0,475	0,635			
White 2006	1,712	0,769	3,808	1,317	0,188			
	1,189	0,775	1,823	0,793	0,428			

Peto odds ratio and 95% Cl

Favours "occluded"

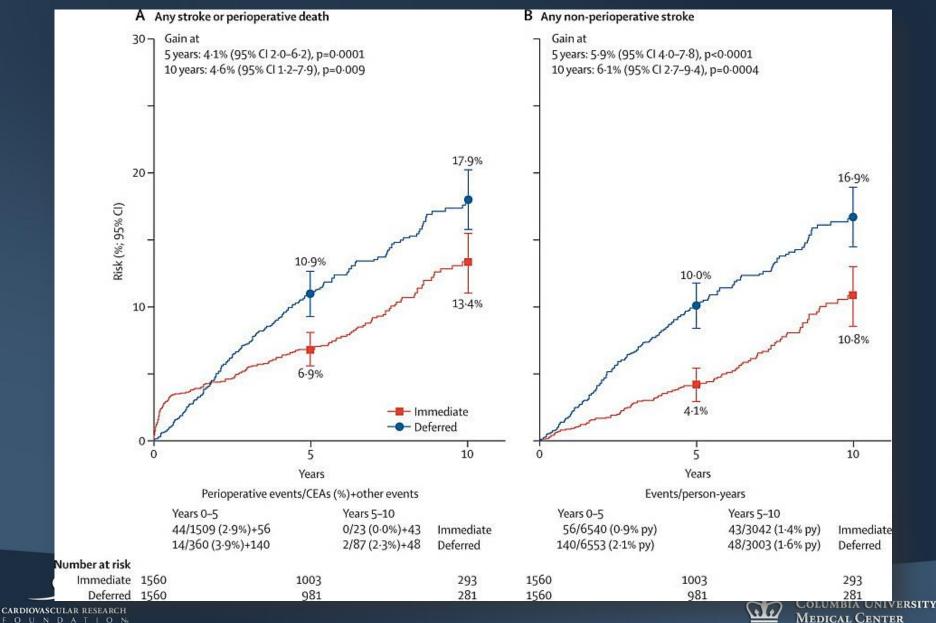
Favours "patent"

Fixed effects model, no sig. heterogeneity; p = 0.108

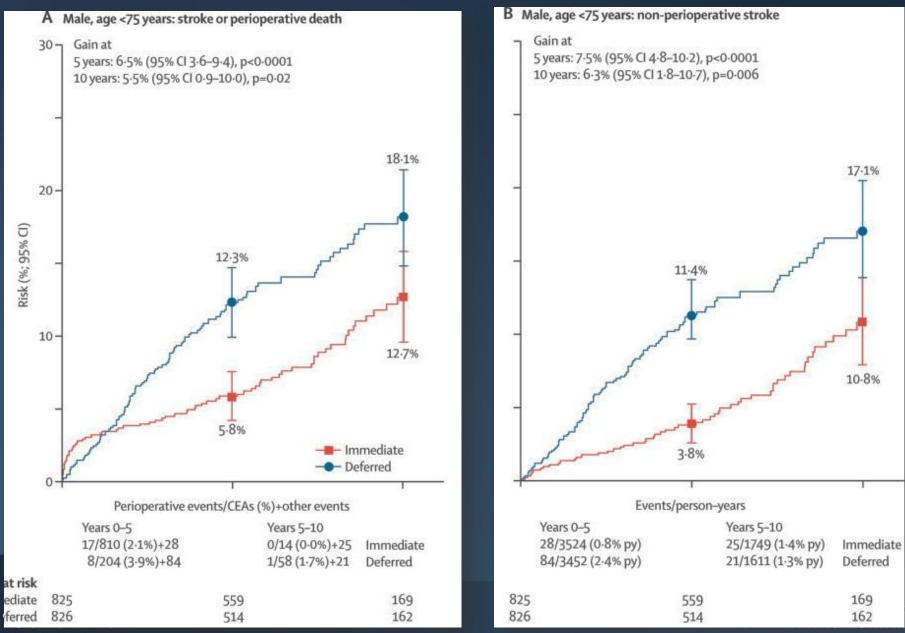
What doesn't CREST tell us?

- Does not address the growing opinion that "modern" medical therapy obviates the need for revascularization for primary prevention
- There are no prospective comparative data in patients with established severe asymptomatic carotid stenosis that would support this contention:

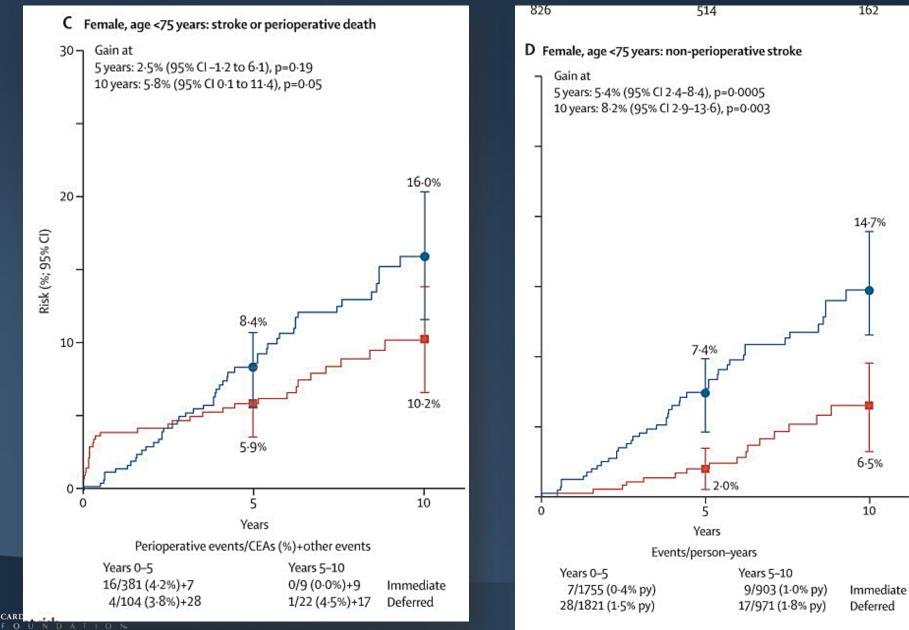
the data that do exist support revascularization



Approach to primary prevention

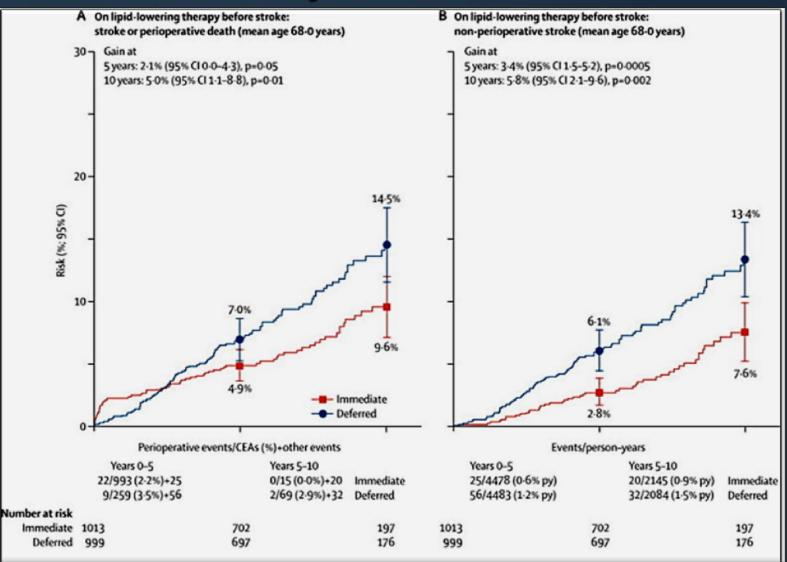


ACST: 10 year outcomes



ACST outcomes: men

RSITY


ACST outcomes: women

CARI

SITY

ACST 10 year data: statins

Halliday A et al. Lancet. 2010 September 25; 376(9746): 1074–1084

CARDIOVASCULAR RESEARCH

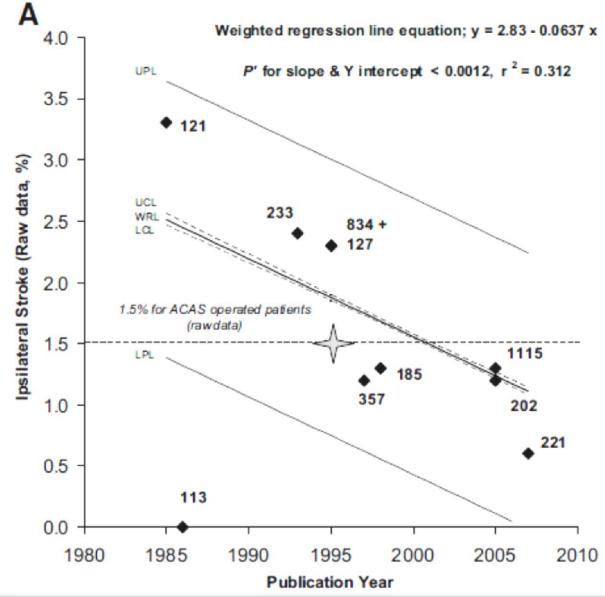
FOUNDATION

Support for medical therapy

Medical (Nonsurgical) Intervention Alone Is Now Best for Prevention of Stroke Associated With Asymptomatic Severe Carotid Stenosis. Results of a Systematic Review and Analysis

Anne L. Abbott Stroke published online Aug 20, 2009; DOI: 10.1161/STROKEAHA.109.556068 DOI: 10.1161/STROKEAHA.100.220008

on one phononed omme Aug 20, 2005.

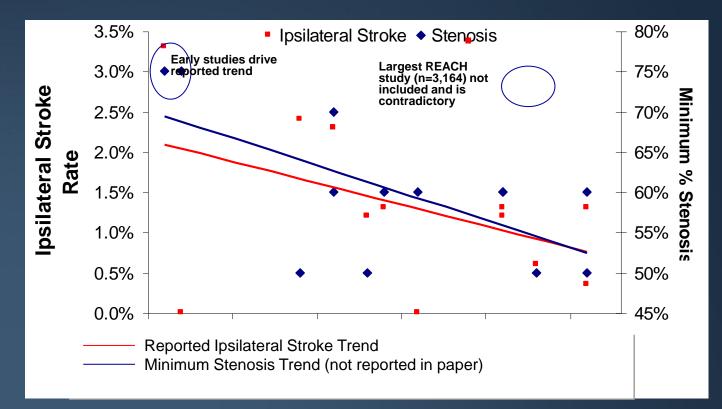

Studies included in analysis: ACST missing

		Ipsilat	Ipsilateral Stroke		al Stroke/TIA	Any Ter	ritory Stroke	Any Territory Stroke/TIA		
Study	Sample Size	Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates	Raw Data	KM Estimates	
Johnson, 1985 ⁷⁶	121	3.3		19.0						
Toronto, 1986²	113	0		7.9 (all TIA)		1.9		10.7	11.0	
VACS, 1993 ¹⁰	233	2.4		5.2		3.0		6.1		
ACAS, 1995 ¹¹	834	2.3	2.2	4.5	3.8	3.8	3.5			
ECST, 1995 ⁷⁷	127	2.3	1.9							
ACBS, 1997 ⁷⁸	357	1.2	1.4	3.4	4.2	2.1	2.5	5.8		
CHS, 1998 ⁸²	185	1.3	1.0			2.6	2.3			
NASCET, 2000 ³	216		3.2							
ACSRS, 2005 ⁷⁹	1115	1.3	1.7	3.1	3.4		2.1		4.1	
ASED, 2005 ⁸⁰	202	1.2	1.0	3.2	3.1	2.4	2.2	5.6	5.1	
SMART, 2007 ⁸¹	221	0.6				0.7				
SMART, 2007 ⁸¹	221	0.6				0.7				
ASED, 2005 ⁸⁰	202	1.2	1.0	3.2	3.1	2.4	2.2	5.6	5.1	

Proposed trends in medical outcomes

CARDIOVASCULAR RESEARCH F O U N D A T I O N

Documentation medical therapy


	Johnson ⁷⁶	Toronto ²	VACS ¹⁰	ACAS ¹¹	ECST ⁷⁷	ACBS ⁷⁸	CHS ⁸²	NASCET ³	ACSRS ⁷⁹	ASED ⁸⁰	SMART ⁸¹
Male		60	100	66	71	40 ‡	4 6	68	61	68	73
Mean age, y		67	65	67‡	64	65‡	73.3	66	70	74	65
Current Smoker			49	24	50	35‡	18	33	18	14	42
Ever smoker		77	91				61		71	73	90
Hypertension		66	64	64	50 ‡	47‡	71	60	63	72	
Ischemic heart disease		77	57	69	33	39‡	38	36	34	52	59
High cholesterol		32				50‡		32‡	60	67	
Diabetes		14	27	21	14	20‡	26	22	21	17	21
Atrial arrhythmia			14			0	4	0	3	0	
PVD		70	59		24	23‡	8	15‡	40	33	45
Nonipsilateral stroke/TIA	0	0	33	27	100	0	0	100	20	42	0
Antiplatelet therapy†	0	≤51	100*	100*	56‡	50	about 0	95%‡	84	88	63
Antilipid therapy							10		25	75D	45
Antihypertension therapy							62		60	77D	63
Other known embolic sources excluded	NO	no	no	по	yes	yes	no	yes	no	yes	no

Differences In Study Populations from the Systematic Review* Drive Its Conclusions

The Change in Minimum Stenosis Thresholds in Studies Over Time Mirrors the Reported Decline In Stroke Rates

* Abbott AL. Medical (nonsurgical) intervention alone is now best for prevention of stroke associated with asymptomatic severe carotid stenosis: results of a systematic review and analysis. *Stroke*. 2009 Oct;40(10):e573-83.

carbier Freedal High cardiovascular event rates in patients with asymptomatic carotid stenosis: the REACH registry. Eur J Neu 2009 Cross 900 B908 UNIVERS TY FOUNDATION

Trends in medical outcomes: what's missing

- Knowledge as to the correct "cocktail" of medication class, specific to carotid-related targets
- Measures of compliance and side effect issues
- Randomized data showing equivalence or superiority to revascularization in asymptomatic severe carotid stenosis

The Carotid "Prescription"

- ASA 81 mg/d
 - No role for dual antiplatelet therapy for stroke "prevention"
- Antihypertensive Therapy
 - Angiotensin Converting Enzyme Inhibitor
 - Angiotensin Receptor Antagonist
- Lipid Lowering Therapy
 - LDL-Cholesterol <100 mg/dL</p>
- Tobacco Cessation
- Glycemic Control (HbA1C <7.0%)

Conclusion

- Secondary prevention:
 - Patients with symptomatic disease should undergo revascularization ASAP following a TIA or non-disabling stroke.
- CREST definitively established both CEA and CAS as safe and effective revascularization options for patients requiring primary or secondary prevention
- Medical therapy for asymptomatic patients may have improved to a point where equipoise exists and a trial vs. revascularization is appropriate

