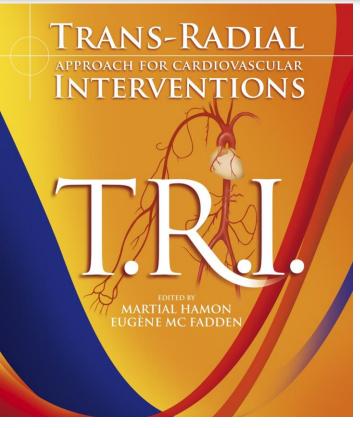


Is There a Higher Risk of Stroke With the Radial Approach? Reasons and Results


Martial Hamon, MD, FESC

University Hospital of Caen INSERM U-744, Lille, France

Disclosures

- Grant/Research Support: GlaxoSmithKline, Lilly, The Medicines Company.
- Lectures, Consulting Fees/Honoraria: Terumo, The Medicines Company, Biotronik, Cordis, Medtronic.

www.angiosoft.net

Cerebrovascular accidents after diagnostic and interventional cardiac catheterization

Mechanisms of cerebrovascular accidents

Embolism of athero-thrombotic material (causes & preventive actions)

- Catheters (thrombosis during procedure) (appropriate heparinization/flushing)
- Left ventricle (mural thrombus post MI) (Echo/avoiding ventriculo)
- Atherosclerotic aorto-femoral plaques* (manipulation of catheters: scraping debris)

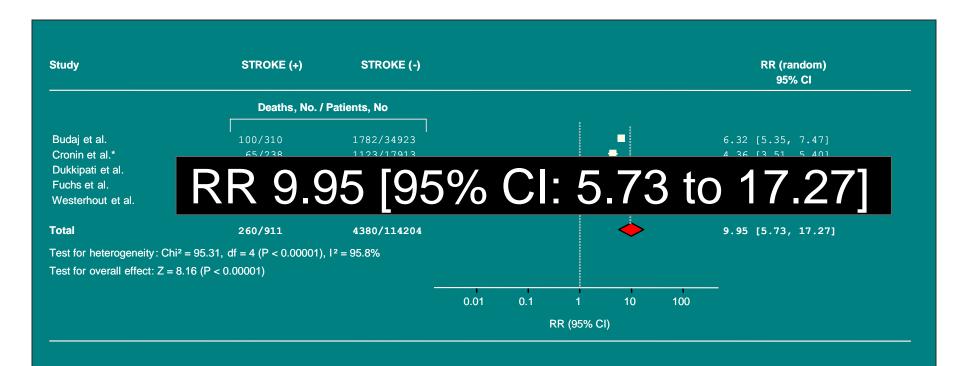
Air embolism (quite frequent) (easily preventable: catheter filling/flushing)

Contrast media (osmotic disruption of the blood-brain barrier) (*low osmotic agent*)

Miscellanous (intracranial bleeding in ACS, antithrombotic regimens...)

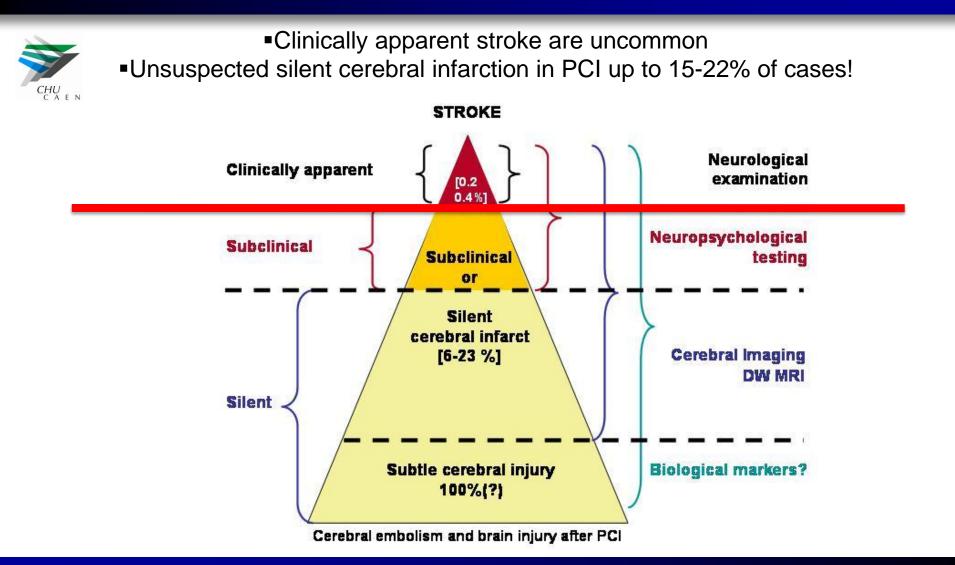
Periprocedural Stroke and Cardiac catheterization

First Author	Patients & Fup	Incidence of Stroke In-hospital & postdischarge N % 95% Cl	Independent Predictors of Stroke OR and 95% CI Predictive variables OR 95% CI P			
Lazar et al (1995)	6,465 in-hospital	Total 27 0.42% [0.27-0.60] Ischemic _ _ _ Hemorrhagic _ _ _ Uncertain _ _ _	Female gender 3.2 $[1.4 - 7.4]$ $p < 0.01$ Vascular disease 3.1 $[1.2 - 8.0]$ $p < 0.05$ Extensive CAD 3.0 $[1.2 - 7.4]$ $p < 0.05$ Ejection fraction 0.4 $[0.2 - 1.0]$ $p < 0.05$ LVH 2.9 $[1.2 - 7.3]$ $p < 0.05$			
AKI PERI-PROCEDURAL STROKE RATE IS LOW						
Fuchs et al (2002)	9,662 in-hospital	Total 43 0.44% [0.32-0.60] Ischemic 21 0.22% [0.13-0.33] Hemorrhagic 20 0.21% [0.13-0.32] Uncertain 2 0.02% [0.00-0.07]	IABP, emergency use9.6 $[3.9-23.9]$ p < 0.001			
MAJORITY ARE ISCHAEMIC						
		Uncertain 36 0.17% [0.12-0.24]	Renal failure3.1[1.8-5.2]p < 0.0001			
Wong et al (2005)	76,903 in-hospital	Total 140 0.18% [0.15-0.21] Ischemic _ _ _ Hemorrhagic _ _ _ Uncertain _ _ _	Age1.0 $[1.0-1.1]$ $p < 0.001$ GPI1.5 $[1.0-2.1]$ $p = 0.027$ AMI3.4 $[2.6-5.8]$ $p < 0.001$ Carotid disease3.4 $[2.1-5.4]$ $p < 0.001$ Renal failure2.0 $[1.0-3.9]$ $p = 0.037$ Heart failure2.9 $[1.9-4.4]$ $p < 0.001$ IABP3.5 $[1.5-8.3]$ $p = 0.004$			


CLINICIAN UPDATE

Hamon et al, Circulation 2008

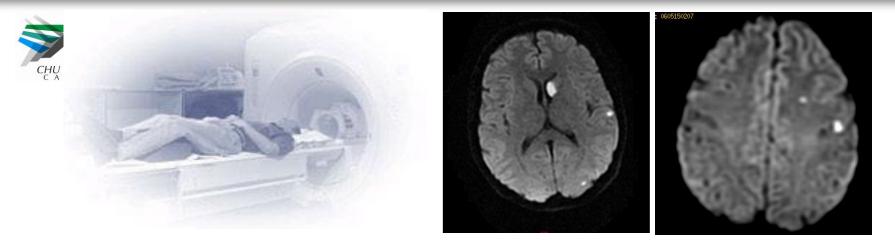
STROKE RISK IN THE CATH LAB


Mortality in patients with peri-procedural stroke

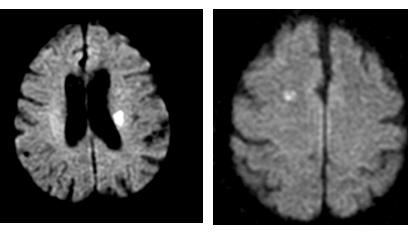
CLINICIAN UPDATE

Hamon et al, Circulation 2008

STROKE RISK IN THE CATH LAB



Silent stroke in cardiac catheterization: Diffusion-Weighted MRI studies



- Silent and apparent cerebral embolism after retrograde catheterization of the aortic valve in valvular stenosis: a prospective, randomized study.
 Omran et al. Lancet 2003;361:1241-1246.
- Cerebral infarction incidence and risk factors after diagnosis and interventional cardiac catheterization-prospective evaluation at DW MRI.
 Busing et al. Radiology 2005;235:177-183.
- Cerebral emboli during left heart catheterization may cause acute brain injury. Lund et al. Eur Heart J 2005;26:1269-1275.
- Cerebral Microembolism during Cardiac catheterization and risk of acute brain injury. A prospective DW MRI study. Hamon et al. Stroke 2006;37:2035-2038.
- Risk of acute brain injury related to cerebral microembolism during cardiac catheterization performed by right upper lim arterial access.
 Hamon et al. Stroke 2007;38:2176-2179.

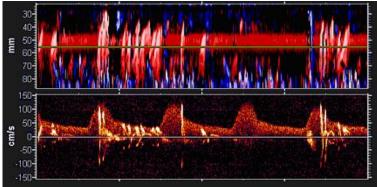
BRAIN INJURY IN THE CATH LAB DW-MRI

Diffusion-weighted Magnetic Resonance Imaging (DW-MRI)

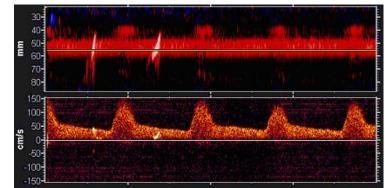
GOLD STANDARD FOR DETECTION OF SUBCLINICAL BRAIN INJURY

Cerebral emboli during left heart catheterization may cause acute brain injury

47 pts, left catheterization (5 PCI), transcranial Doppler, Cerebral MRI 754 cerebral microemboli: 92.1% gaseous , 7.9% solid

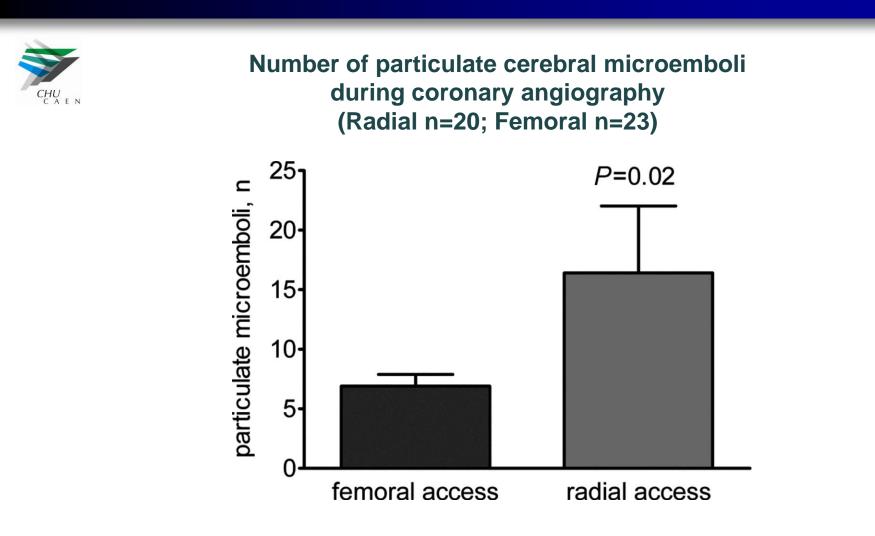

% Solid microemboli: median (range) New cerebral lesions MRI* (%)	Transradial 78.7 57 (18-372) 15.2	Transfemoral 21.3 36 (12-66) 0	p 0.012 0.567
 *associated with solid microemboli: median (range) longer fluoroscopy time 	90 (60-372)	42 (12–246)	0.016
	11.3 (3.8-14.8)	5.2 (1.4–33.6)	0.039

6F diagnostic catheters + 0.038", J tip, 220 cm guidewire


(Non randomized, non consecutive series, monocentric, small sample, no adjustment, unknown radial experience...)

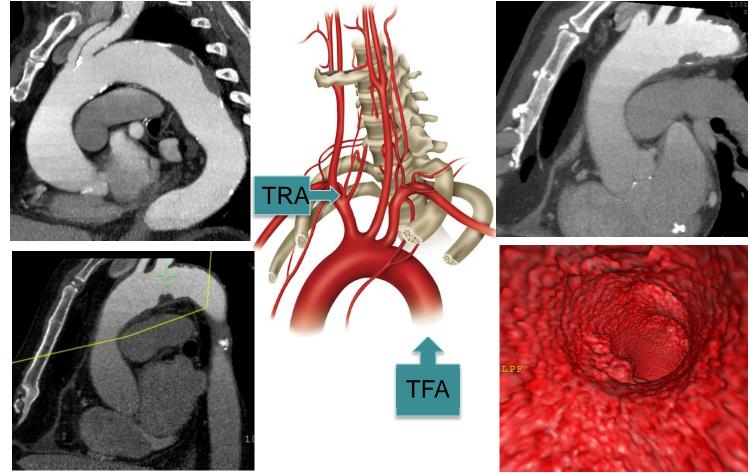
BRAIN INJURY IN THE CATH LAB Trans-cranial doppler (TCD)

Clusters of microemboli entering the brain



A solid microembolus detected by multifrequency

GOLD STANDARD FOR DETECTION OF SUBCLINICAL BRAIN EMBOLIZATION


Cerebral Microembolism During Coronary Angiography A Randomized Comparison Between Femoral and Radial Arterial Access

Jurga J et al. Stroke 2011;42:1475-1477

Impact of Arterial Access sites On the risk of stroke

Retrograde progression of aortic atheroma with age

From Descending Aorta to the Arch and Ascending Aorta

Keeley EC et al. J Am Coll Cardiol 1998;1861-5

Khoury Z Am J Cardiol 1997; 79: 23-27

THE SCIPION TRIAL

Silent Cerebral Infarcts Following Cardiac Catheterization :

A Randomized Comparison Of Radial And Femoral Approaches

<u>Martial Hamon¹</u>, Janusz Lipiecki², Didier Carrié³, Francesco Burzotta⁴, Nicolas Durel², Guillaume Coutance¹, Nicolas Boudou³, Cesare Colosimo⁴, Carlo Trani⁴, Nicolas Dumonteil³, Rémy Morello¹, Fausto Viader¹, Béatrice Claise², Michèle Hamon¹

¹ University Hospital, Caen, FRANCE, ² University Hospital, Clermond-Ferrand, FRANCE, ³ University Hospital, Toulouse, FRANCE, ⁴The Policlinica, Catholica University Hospital, Roma, ITALY

Institut national de la santé et de la recherche médicale

STUDY DESIGN

Trials

Study protocol

O BioMed Central

Open Access

Silent cerebral infarct after cardiac catheterization as detected by diffusion weighted Magnetic Resonance Imaging: a randomized comparison of radial and femoral arterial approaches Michèle Hamon¹, Francesco Burzotta², Catherine Oppenheim³, Rémy Morello⁴, Fausto Viader⁵, Martial Hamon^{*6} for the SCIPION Investigators⁷

PROSPECTIVE MULTICENTER RANDOMIZED TRIAL:

- 1) University Hospital of Caen, Normandy, France
- 2) University Hospital of Clermont-Ferrand
- 3) University Hospital of Toulouse
- 4) Catholic University of the Sacred Heart, Rome, Italy

OBJECTIVES

- 1. to assess the rate of DW-MRI-detected silent brain infarct after left cardiac catheterization including retrograde catheterization of aortic valve, in patients with aortic valvular stenosis.
- 1. to determine if the use of Radial access, compared to Femoral, is associated with reduced risk of silent cerebral lesions

PRIMARY END-POINT

THE OCCURRENCE OF NEW LESIONS AFTER CARDIAC CATHETERIZATION, AS DETECTED BY DW-MRI, BETWEEN THE 2 GROUPS (RADIAL VERSUS FEMORAL)

METHODS: PATIENTS

INCLUSION CRITERIA

 Consecutive patients with severe aortic stenosis scheduled for cardiac catheterization (coronary artery angiography and attempt to cross the stenosis valve for gradient assessment).

EXCLUSION CRITERIA

Contraindication to MRI or inability to give written informed consent.

RANDOMIZATION

 After informed consent signed, eligible patients were randomized 1:1 to a strategy of Radial or Femoral access

SAMPLE SIZE CALCULATION

152 patients, randomized 1:1, power 80%, p<0.05
 (Omran et al, Lancet 2003 vs Hamon et al, Stroke 2006)

	n	Heparin	Fluoroscopy Time (min) DWI+/DWI-	Catheter Size (French)	Serial DW MRI	New Cerebral Infa Observed %		Indication
0mran 2003³	101	5000 IU	6.1/2.9	6 F-7 F	100%	22%	23% [15-31]	Aortic stenosis
Lund 2005 ⁵	47	5000 IU	11.3/5.2	6 F	89%	13.5%	15.7% [6-26]	CAD
Busing 2005 ⁴	48	2500 IU	10.1/7.4	5 F-6 F-7 F	94%	15%	17% [7–28]	CAD
Hamon 2006	46	5000 IU	7.0/5.4	5 F	100%	2.2%	5.9%* [0.01-12.5]	Aortic stenosis

METHODS: DW-MRI

MRI performed within 24 hrs before and 48 hrs after cardiac cath.

Main outcome measure : Occurrence of new cerebral infarct on serial DW-MRI

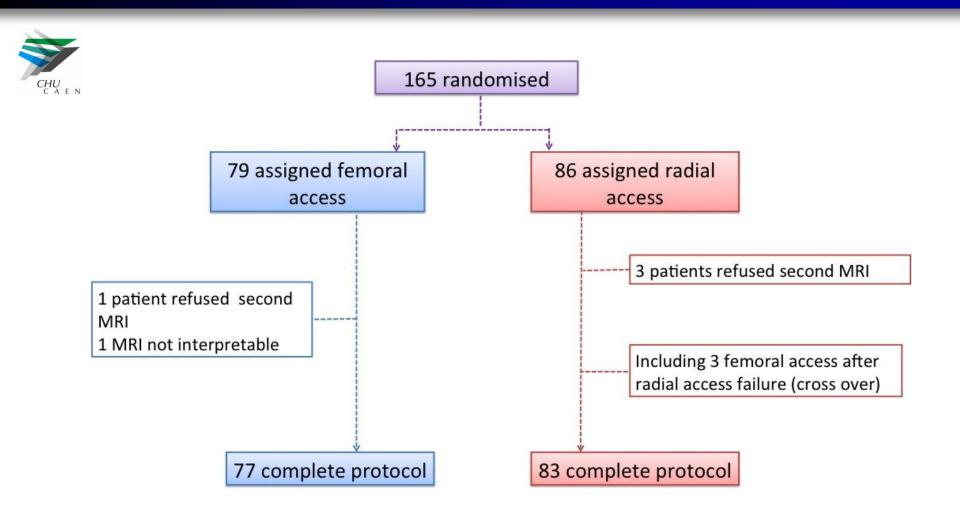
For **DW-MRI**, the diffusion gradients were successively and separately applied in three orthogonal directions. **Apparent diffusion coefficient (ADC) maps** were calculated.

For analysis of DW-MRI (DICOM-CD provided by Centers) a neuroradiologist (blinded to randomization and patient status) visually determined:

- the presence
- size
- number
- vascular distribution

of any focal diffusion abnormalities (bright lesions) consistent with embolic lesions.

METHODS: TRANSCRANIAL DOPPLER SUBSTUDY

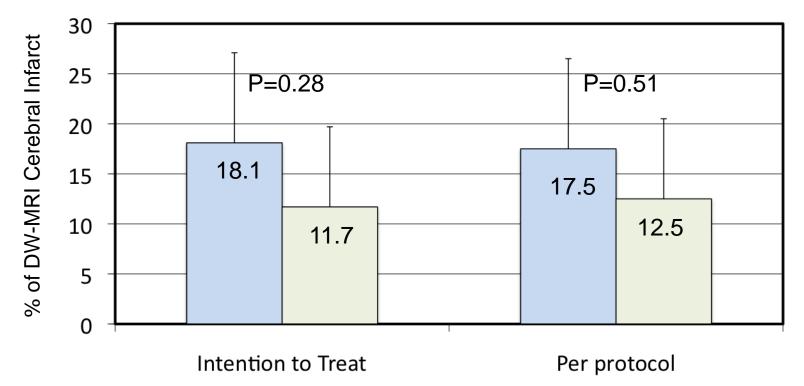


• **Transcranial Doppler** studies were performed in a subgroup of patients

High-power/high-intensity, transient unidirectional signals corresponding to the definition of microembolic signature were used for the analysis.

STUDY FLOW CHART

Baseline characteristics Demographics and procedural parameters


	Femoral (n=77)	Radial (n=83)	p
Age (y)	73.4 ± 11.5	75.5 ± 8.6	0.18
Male (%)	54.5	54.2	1.00
ВМІ	27.5 ± 4.7	27.3 ± 4.9	0.78
Weight (kg)	76.2 ± 13.5	74.9 ± 16.5	0.61
Height (cm)	164 ± 8	166 ± 8	0.16
Mean Gradient (mmHg)	45.8 ± 14.2	47.9 ± 14.2	0.36
LVEF (%)	62.4 ± 12.4	60.7 ± 12.5	0.40
History of AF (%)	22.1	16.9	0.43
History of CAD (%)	11.7	12.0	1.00
History of stroke (%)	3.9	4.8	1.00
Carotid atherosclerosis (%)	24.7	19.3	0.45
Hypertension (%)	75.3	78.3	0.71
Hypercholesterolemia (%)	46.8	54.2	0.43
Diabetes mellitus	36.4	27.7	0.31
Catheter used > 3 (%)	80.5	62.7	0.01
Use of 6F catheters (%)	7.8	9.6	0.68
Crossing the aortic valve(%)	96.1	91.6	0.33
Fluoroscopy time (mn)	7.2 ± 5.6	7.8 ± 4.4	0.49
Procedure duration (mn)	25.3 ± 12.8	24.7± 13.3	0.82

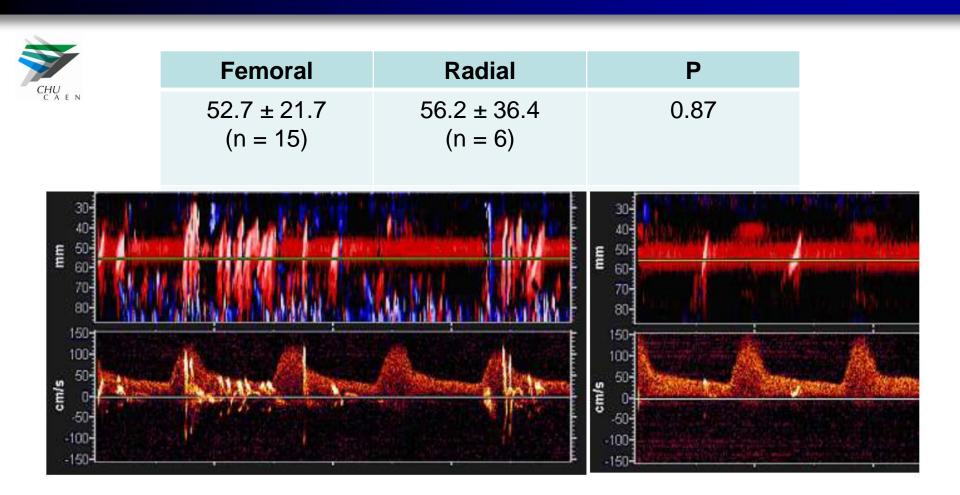
DW-MRI Cerebral Infarcts after left heart catheterization Primary endpoint

Intention to treat and per protocol analyses

24 (15%) patients had cerebral infarcts -> 22 (91.6%) asymptomatic □ Radial access □ Femoral access

Univariate analysis comparing patients with or without new cerebral infarct on DW-MRI

	SBI	No SBI	р
	(n=24)	(n=136)	
Age (y)	77.6 ± 6.7	73.9 ± 10.5	0.10
Male (%)	50	55.1	0.66
BMI	27.5 ± 4.5	$\textbf{27.3} \pm \textbf{4.8}$	0.84
Weight (kg)	72 ± 13.1	76.1 ± 13.4	0.22
Height (cm)	170 ± 8	165 ± 8	0.002
Mean Gradient (mmHg)	41.3 ± 15.1	47.8 ± 13.8	0.04
LVEF (%)	59.3 ± 15.9	61.9 ± 11.8	0.45
History of AF (%)	29.2	17.6	0.26
Previous CAD (%)	12.5	11.8	1.00
Previous stroke (%)	0.0	5.1	0.38
Carotid atheroscl. (%)	25.0	21.3	0.79
Hypertension (%)	58.3	80.1	0.03
Hypercholesterolemia (%)	41.7	52.2	0.38
Diabetes Mellitus	25.0	33.1	0.48
Catheter used > 3 (%)	75.0	70.6	0.81
Use of 6F catheters (%)	4.2	9.6	0.64
Crossing the aortic valve(%)	95.8	93.4	1.00
Fluoroscopy time (mn)	8.7± 4.7	7.3±5.0	0.23
Procedure duration (mn)	25.3 ± 11.7	24.9 ± 13	0.88


PREDICTORS OF MRI-DETECTABLE CEREBRAL INFARCTS

AT MULTIVARIABLE ANALYSIS

- higher height of the patient (OR 8.24; 95% CI 2.71 to 25.02) (possibly related to the length of catheter in contact with the blood stream ?)
- lower transvalvular gradient (OR 0.96; 95% CI 0.93 to 0.99) (primary haemostatic abnormalities in the most severe aortic stenosis patients, less blocked valve more prone to debris detachment?)

HIGH INTENSITY TRANSIENT SIGNAL AT TCD

CONCLUSIONS

Silent cerebral embolization frequently occurs during left heart catheterization in patients with severe aortic stenosis

Radial approach does not reduce silent cerebral infarcts

Based on DW-MRI and transcranial doppler assessments in the SCIPION trial, the choice of vascular approach (radial or femoral) seems to have no impact on cerebral embolization and subsequent brain injury

Silent cerebral infarcts after cardiac catheterization: A randomized comparison of radial and femoral approaches

Martial Hamon, MD, ^{a,b,g} Janusz Lipiecki^{c,g} Didier Carrié^{d,g} Francesco Burzotta^{e,g} Nicolas Durel^{c,g} Guillaume Coutance^{a,g} Nicolas Boudou^{d,g} Cesare Colosimo^{e,g} Carlo Trani^{e,g} Nicolas Dumonteil^{d,g} Rémy Morello^{a,g} Fausto Viader^{a,g} Béatrice Claise^{c,g} and Michèle Hamon^{a,f,g} Caen, Lille, Clermont-Ferrand, and Toulouse, France; and Roma, Italy

Background Single center studies using serial cerebral diffusion-weighted magnetic resonance imaging in patients having cardiac catheterization have suggested that cerebral microembolism might be responsible for silent cerebral infarct (SCI) as high as 15% to 22%. We evaluated in a multicenter trial the incidence of SCIs after cardiac catheterization and whether or not the choice of the arterial access site might impact this phenomenon.

Methods and Results Patients were randomized to have cardiac catheterization either by Radial (n = 83) or Femoral (n = 77) arterial approaches by experimented operators. The main outcome measure was the occurrence of new cerebral infarct on serial diffusion-weighted magnetic resonance imaging. Patient and catheterization characteristics, including duration of catheterization, were similar in both groups. The risk of SCI did not differ significantly between the Femoral and Radial groups (incidence of 11.7% versus 17.5%; OR, 0.85; 95% CI, 0.62-1.16; P = .31). At multivariable analysis, the independent predictors of SCI were the patient's higher height and lower transvalvular gradient.

Conclusions The high rate of SCI after cardiac catheterization of patients with aortic stenosis was confirmed, but its occurrence was not affected by the selection of Radial and Femoral access. (Am Heart J 2012;0:1-6.e1.)

Hamon et al. Am Heart J 2012 Oct;164:449-454.