Modeling the Risk of Stroke and Bleeding in Atrial Fibrillation: What Are the Optimal Risk Scores?

Roxana Mehran, MD

Mount Sinai School of Medicine New York, NY

Session II. Weighing the Risks and Benefits of Therapeutic Alternatives Left Atrial Appendage Closure: Indications, Devices, and Techniques

MOUNT SINAI SCHOOL OF MEDICINE

Mount Sinai Department of Medicine Disclosure

I receive financial support from the following company or companies related to the products listed below. These relationships may lead to bias in my presentation.

Entity Abbott Vascular Astra Zeneca

Janssen (J+J) Regado Biosciences BMS/Sanofi

The Medicines Co.

Type(s) of relationship(s) Advisory Board

Consultant/Scientific Advisory Board

Advisory Board

Advisory Board

Research Grant Support (Institutional)

Research Grant Support (Institutional)

Stroke Prevention in AF

Clinical-Decision Making in Afib Medicine is the ART of "Balance"

The CHADS₂ Index Stroke Risk Score for Atrial Fibrillation

	<u>Score (points)</u>	Prevalence (%)*
Congestive Heart fail	ure 1	32
Hypertension	1	65
Age >75 years	1	28
Diabetes mellitus	1	18
Stroke or TIA	2	10
Moderate-High risk	<u>≥</u> 2	50-60
Low risk	0-1	40-50

VanWalraven C, et al. *Arch Intern Med* 2003; 163:936. •Nieuwlaat R, et al. (EuroHeart survey) *Eur Heart J* 2006 (E-published). •Comparison of 12 risk stratification schemes to predict stroke in patients with non-valvular atrial fibrillation. *Stroke* 2008;39:1901-1910.

CHA₂DS₂VASc is a newer scoring system

 CHA₂DS₂VASc, developed by Lip et al, is a refinement of the older CHADS₂ Score which includes additional stroke risk factors and puts greater emphasis on age as a risk factor¹

	Condition/Risk Factor	Points		18%			
С	Congestive heart failure	1		15%	Annual Risk	of Str	oke _{15.2%}
н	Hypertension	1	(e				
Α	Age ≥75 years	2	trol	12%			0.6%
D	Diabetes mellitus	1	of Si	9%			
S ₂	Previous stroke or TIA	2	sk o	00/			
V	Vascular disease	1	Ris	6%	4.0%		
Α	Age 65-74 years	1		3%	2.2%		
Sc	Sex (female gender)	1		0%	0.0%		
				0 /0	0 1 0 0 1 5	6 7	0 0

European Society of Cardiology Guidelines²

CHA ₂ DS ₂ -VASc Score	Treatment
0	No treatment
1	Aspirin or warfarin or dabigatran
≥2	Warfarin or dabigatran

TCT2012

1. Lip GY et al, Chest. 2010;137(2):263-72 2. Camm AJ et al, Eur Heart J. 2012 doi: 10.1093/eurheartj/ehs253

Risk Stratification and Anticoagulation Stroke Reduction with Warfarin Instead of Aspirin

AFASAK I, AFASAK II, ATHENS, BAFTA, EAFT, NASPEAF, PATAF, SIFA, SPAF II, SPAF III, WASPO

How do the two CHADS scores compare?

Generally, they result in similar treatment recommendations

Where they are the same:

Both CHADS systems assign 1 "point" each for presence of congestive heart failure (any), hypertension and diabetes Both CHADS systems assign 2 points for prior TIA or stroke

Where they differ:

- CHA_2DS_2VASc puts greater emphasis on age, assigning 1 point for age between 65-74 years, and 2 points for age \geq 75 years. $CHADS_2$ only assigns one point for age \geq 75 years
- CHA₂DS₂VASc adds 1 point each for presence of any vascular disease and female gender, which are not included in the CHADS₂ score

New Agents for Atrial Fibrillation Oral direct inhibitors

Adapted from: Weitz JI. J Thromb Haemost. 2005;3:1843.

Primary Endpoint of Stroke or Systemic **Embolism: Non-inferiority Analysis**

Non Inferiorirty p vs warfarin

RE-LY			ITT Analysis
Dabigatran 110 mg	1.53% per year	HR = 0.91	p<0.001
Dabigatran 150 mg	1.11% per year	HR = 0.66	p<0.001
Warfarin	1.69% per year		
ROCKET AF			Modified ITT
Rivaroxaban 20 mg	1.7% per year	HR = 0.79	p<0.001
Warfarin	2.2% per year		
ARISTOTLE			ITT Analysis
Apixaban 5 mg	1.27% per year	HR = 0.79	p<0.001
Warfarin	1.60% per year		

No ITT analysis is available for non-inferiority in Rocket AF. An on treatment or per-protocol analysis is generally performed in the assessment of non-inferiority. If numerous patients come off of study drug, this biases the trial towards a non-inferior result in an ITT analysis. This is the basis for performing a per-protocol analysis in a noninferiority assessment.

Major Bleeding: Dual antiplatelet vs Warfarin

ACTIVE Investigators. Lancet. 2006;367;1903-1912.

CARDIOVASCULAR

RESEARCH FOUNDATIO

New Oral Anticoagulants: Phase III AF Trials **Major Bleeding**

Rates = per yr FU

RE-LY

- Warfarin
- Dabigatran 110 mg
- Dabigatran 150 mg

0.80 (0.69-0.93), P=0.003

ROCKET AF

- Warfarin
- Rivaroxaban 20 mg

1.04 (0.90-1.20), P=0.58

ARISTOTLE

Warfarin

Apixaban 5 mg

0.69 (0.60-0.80), P<0.001

New Oral Anticoagulants: Phase III AF Trials Intracranial Hemorrhage

Connolly SJ, et al. NEJM 2009;361:1139-51; Patel MR et al, NEJM 2011; Granger CB et al. NEJM 2011

Hemorrhagic Stroke

RELY		HR	ITT P-value
Dabigatran 110 mg	0.12% / yr	0.31	<0.001
Dabigatran 150 mg	0.10% / yr	0.26	<0.001
Warfarin	0.38% / yr		
ROCKET		HR	mITT P-value
Rivaroxaban 20 mg	0.26% / yr	0.59	0.024*
Warfarin	0.44% / yr		
ARISTOTLE		HR	ITT P-value
Apixaban 5 mg	0.24% / yr	0.51	<0.001
Warfarin	0.47% / yr		

*In an ITT analysis in Rocket AF Hemorrhagic Stoke rates were 0.26% / yr for rivaroxaban and 0.44% / yr for warfarin, p=0.012. No on treatment analysis is available from RE-LY.

Patel MR et al, NEJM 2011; Connolly SJ, et al. N Engl J Med. 2009;361:1139-1151; Granger C et al, N Eng J Med; 2011

Definitions of Major Bleeding in Clinical Trials: Main Components

Clinical Events

- Intracranial / intracerebral bleeding
- Intraocular bleeding
- Bleeding causing hemodynamic compromise
- Cardiac tamponade
- Retroperitoneal hematoma
- Hematoma
- Surgical intervention for bleeding
 - **Blood product transfusion**

Laboratory Parameters

- Decrease in Hgb ≥3 g/dL with overt source of bleeding
- Decrease in Hgb ≥4 g/dL w/o overt source of bleeding
- Decrease in Hgb ≥5 g/dL with or w/o overt source of bleeding
- Decrease in Hct ≥15% with overt source of bleeding

Definitions of Major or Severe Bleeding in Randomized Controlled Clinical Trials

Type of bleeding	GUSTO	TIMI phase I	TIMI phase II	REPLACE-2	OASIS-5 ESSENCE	CURE	STEEPLE	ACUITY HORIZONS	PLATO
Intracranial/intracerebral	+	+	+	+	+	+	+	+	+
Intraocular	-	-	-	+	+	+	+	+	+
Retroperitoneal	-	-	-	+	+	+	+	+	-
Bleeding causing hemodynamic compromise	+	-	-	-	-	+	+	-	+
Cardiac tamponade	-	+	+	-	-	-	-	-	+
Bleeding requiring surgical intervention	-	-	-	-	-	+	+	+	+
Hematoma >5cm at the puncture site	-	-	-	-	-	-	-	+	-
Transfusion, units	≥1	≥1	≥1	≥2	≥2	≥2	≥1	≥1	≥4
Decrease in Hgb <i>with</i> overt bleeding, g/dL	-	≥5.0*	≥3.0	≥3.0	≥3.0	-	≥3.0	≥3.0	≥5.0
Decrease in Hgb <i>without</i> overt bleeding, g/dL	-	-	-	≥4.0	-	≥5.0	-	≥4.0	-

*Or decrease in Hct ≥15%

BARC Bleeding Definitions

BARC

- Type 0: No bleeding
- **Type 1:** Bleeding that is not actionable
- **Type 2:** Any overt, actionable sign of hemorrhage requiring nonsurgical intervention leading to hospitalization or increased level of care
- Type 3a:
 - Overt bleeding plus hemoglobin drop of 3 to <5 g/dl
 - Transfusion with overt bleeding
- Type 3b:
 - Overt bleeding plus hemoglobin drop ≥5 g/dl
 - Cardiac tamponade
 - Bleeding requiring surgical intervention or vasoactive agents
- Type 3c:
 - Intracranial hemorrhage
 - intraocular bleeding compromising vision
- **Type 4:** Coronary artery bypass grafting-related bleeding
- Type 5: Fatal bleeding

Are the BARC Bleeding Definitions Valid?

Interventional Cardiology

Validation of the Bleeding Academic Research Consortium Definition of Bleeding in Patients With Coronary Artery Disease Undergoing Percutaneous Coronary Intervention

Gjin Ndrepepa, MD; Tibor Schuster, PhD; Martin Hadamitzky, MD; Robert A. Byrne, MB, BCh; Julinda Mehilli, MD; Franz-Josef Neumann, MD; Gert Richardt, MD; Stefanie Schulz, MD; Karl-Ludwig Laugwitz, MD; Steffen Massberg, MD; Albert Schömig, MD; Adnan Kastrati, MD

Ndrepepa G et al. Circulation. 2012;125:1424-31.

Predictivity of the Multivariable Models Without and After Inclusion of Bleeding in Regard to 1-Year Mortality

Adjusted receiver operating characteristic curves showing predictivity of the multivariable models in regard to 1-year mortality without and with inclusion of the bleeding events defined by Bleeding Academic Research Consortium (BARC), Thrombolysis in Myocardial Infarction (TIMI), and Randomized Evaluation in PCI Linking Angiomax to Reduced Clinical Events (REPLACE-2) criteria.

Figure 3. Ndrepepa G et al. Circulation. 2012;125:1424-31.

Although various bleeding risk-prediction tools have been developed in general populations undergoing anticoagulation, only 3 have been initially derived for and validated exclusively in patients with AFib:

- HEMORR₂HAGES (Hepatic or Renal Disease, Ethanol Abuse, Malignancy, Older Age, Reduced Platelet Count or Function, Re-Bleeding, Hypertension, Anemia, Genetic Factors, Excessive Fall Risk and Stroke)
- HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile International Normalized Ratio, Elderly, Drugs/Alcohol)
- **ATRIA** (Anticoagulation and Risk Factors in Atrial Fibrillation)

HEMORR₂HAGES

HEMORR2HAGES by adding: 2 points for

- prior bleed
- **1** point for each of the other risk factors:
- hepatic or renal disease,
- ethanol abuse,
- malignancy,
- older (age > 75 years),
- reduced platelet count or function,
- hypertension (uncontrolled),
- anemia,
- genetic factors,
- excessive fall risk
- stroke

HAS-BLED risk of bleeding

- HAS-BLED, developed by Pisters et al, allows clinicians to assess an individual's risk of bleeding based on comorbidities¹
- In determining when oral anticoagulation is appropriate, clinicians must balance the CHADS₂ or CHA₂DS₂VASc score against HAS-BLED
- Unfortunately, a high CHADS score often correlates with a high HAS-BLED score and these patients do not receive anticoagulation due to the high bleeding risk

	Condition	Points	
н	Hypertension	1	
Α	Abnormal liver and renal function (1 point each)	1 or 2	
S	Stroke	1	
В	Bleeding	1	
L	Labile INR	1	
Е	Elderly (age >65)	1	
D	Drugs or alcohol (1 point each)	1 or 2	

HASBLED

TCT2012

Risk of major bleeding in patients with AF in the Euro Heart Survey

Score	Bleeds Per 100 Patient Years
0	1.13
1	1.02
2	1.88
3	3.74
4	8.7

Hypertension, stroke and age are also variables in the CHADS scores

1. Pisters R et al. Chest 2010;138(5):1093-100

ATRIA

(Anticoagulation and Risk Factors in Atrial Fibrillation)

- Anemia (3 points),
- Severe renal disease (e.g., eGFR <30 ml/min or dialysis-dependent, 3 points),
- Age ≥75 years (2 points),
- Prior bleeding (1 point),
- Hypertension (1 point).

Performance of the HEMORR2HAGES, ATRIA, and HAS-BLED Bleeding Risk–Prediction Scores in Patients With Atrial Fibrillation Undergoing Anticoagulation :

The AMADEUS (Evaluating the Use of SR34006 Compared to Warfarin or Acenocoumarol in Patients With Atrial Fibrillation) Study

RESULTS

AUCs (or C-Indexes) for HEMORR2HAGES, ATRIA, and HAS-BLED Scores

	Any Clinically Relevant Bleeding			Major Bleeding			Death		
AUC Analysis	AUC	95% Cl	SE	AUC	95% Cl	SE	AUC	95%CI	SE
HEMORR ₂ HAGES	0.55	0.51-0.59	0.019	0.60	0.51-0.69	0.046	0.57	0.50-0.65	0.033
HAS-BLED	0.60	0.56-0.63	0.015	0.65	0.56-0.73	0.043 🤇	0.67	0.60-0.73	0.035
ATRIA	0.50	0.46-0.54	0.020	0.61	0.51-0.70	0.048	0.63	0.56-0.69	0.037

Comparison of Bleeding Schemas

Receiver-Operating Characteristic Curves of the Bleeding Risk Schemes for the 3 Outcomes

RESULTS

Cox Regression Analysis of the HEMORR2HAGES, HAS-BLED, and ATRIA Score for the Outcomes of All-Cause Mortality, Major Bleeding, and Any Clinical Relevant Bleeding

	Any Clinically Releva	nt Bleeding	Major Bleed	All-Cause Mor	All-Cause Mortality	
Score	HR (95% CI)	p Value	HR (95% CI)	p Value	HR (95% CI)	p Value
HEMORR ₂ HAGES >1	1.2 (0.9-1.5)	0.30	1.8 (0.9-3.5)	0.08	2.0 (1.3-3.3)	0.003
HAS-BLED >2	1.9 (1.4-2.4)	< 0.001	2.4 (1.3-4.6)	0.006	2.9 (1.9-4.6)	< 0.001
ATRIA >3	1.2 (0.8-1.7)	0.50	2.3 (1.1-5.1)	0.03	2.3 (1.3-4.0)	0.005

Conclusions (Major Bleeding)

- With respect to major bleeding events, all 3 scores demonstrated significant predictive ability, although their c-indexes were below the cutoff point of what is considered good performance (c-index: <0.70).
- No statistically significant differences were observed between the 3 scores in the outcome of major bleeding.

Modeling Stroke and Bleeding in AF

- Risk scores allow for identifying patients at risk for the outcome of interest and help in choosing the best therapy for pts with Afib
- With respect to Stroke prediction, CHADS Vasc 2 should be used routinely
- The HAS-BLED score may be an attractive method for the estimation of oral anticoagulant-related bleeding risk for use in clinical practice
- The risk factors for bleeding and stroke are similar (age, gender, CKD, DM), therefore risk scores are needed to evaluate the NET clinical benefit for pts with Afb when choosing best possible therapy for a given patient.

