Emerging Opportunities for Future TAVR Development: Stroke, Paravalvular Leaks and Beyond

Susheel Kodali, MD

Columbia University Medical Center Cardiovascular Research Foundation New York, NY

Tuesday; October 23, 2012

Disclosure Statement of Financial Interest TCT 2012; Miami, FL

Susheel K. Kodali, MD

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Consulting Fees
- Medical Advisory Board Equity

Company

- Edwards Lifesciences, St. Jude Medical
- Thubrikar Aortic Valve, Inc, VS Medtech

TAVR: Where are we now? The Good News

- First generation devices have evolved to make TAVR a more predictable procedure
- Device profiles have come down making transfemoral approach safer and more feasible
- Randomized studies have proven role of TAVR in high risk and inoperable patients
- Mid term results have demonstrated valve durability (however, no long term results available)

TAVR: Where are we now? The Not So Good News

- Peri-procedural stroke remains a significant concern and may limit applicability of TAVR to lower risk populations
- Major bleeding and major vascular complications remain an issue and impact long term mortality
- Although rare (<1%), catastrophic procedural complications such as coronary occlusion, annular rupture and root injury still occur and are unpredictable

INVASIVENESS

INVASIVENESS

Device Development Lifecycle

CARDIOVASCULAR RESEARCH FOUNDATION A Passion for Innovation

TAVR *What are the Needs?*

- Access site management
- Embolic protection
- Management of Paravalvular Regurgitation
- Ability to predict complications

TVAC - 2012

Transapical Access and Closure

Transapical Access and Closure

- Advantages of TA approach
 - Most direct route to aortic valve
 - Provides a platform for other interventions mitral valve, PVL closure, pulm vein ablation, etc
- Disadvantages
 - Unfamiliar to most surgeons
 - It is still an invasive approach
 - Bleeding complications can be catastrophic

Surgeon's Worst Nightmare

Requirements of Transapical Closure System

- Secure closure with a failsafe backup
- Biocompatible
- Works in all cases reop chest, infarct, severe LVH, small LV, etc
- Small "footprint" minimal material left behind with good healing response
- Easy to use short learning curve
- Compatible with percutaneous access

Transcutaneous Ventricular Access and Closure (TVAC)

- Apica ASC
- Entourage CardioClose
- MID Permaseal
- Novogate
- SpiRx
- Cardiapex

Apica ASC[™] System

Titanium Access Coil

Closure Cap & Delivery Tool

Platform Technology Enables

- TAVR
- MVR Future Trans catheter Devices
- LVAD Port Connector Variation
- TAA Ascending Aorta
- Complex EP Ablation

Apica ASC[™] System

- Titanium access coil attaches securely to ventricle and stabilizes sheath
- Durable Fatigue Profile
- Biocompatible
 - Surface modification promotes tissue adhesion
 - Long implant history
- Closure cap provides redundant mechanism
- Reaccessibile

Apica ASC System Animation + FIM (Thomas Walther; May, 2012)

CardioClose[™] Ventricular Closure Device

CardioClose[™]: Distal End

CardioClose[™] Ventricular Closure Device

Permaseal[™] Transmyocardial Access and Closure Device

OUNDATION A Passion for Innovation

Permaseal[™] Transmyocardial Access and Closure Device

OUNDATION A Passion for Innovation

PERMASEAL: TRANSMYOCARDIAL ACCESS AND CLOSURE DEVICE

TVAC - 2012

Large Vessel Closure

Large Vessel Closure Is there a need?

- Goals of Closure
 - Patient comfort
 - Facilitate early mobilization
 - Reduce infection risk?
- Requirements of closure
 - Accommodate varying size devices
 - Reliable
 - Reaccessible

Failure mode not catastrophic

Percutaneous Access & Closure

Current CLOSURE

TAVR Vascular Closure Techniques (trans-femoral) PERCUTANEOUS CLOSURE

Suture mediated
One Prostar
Two (or three) Proglides
CE mark approval for up to 24F

A Paccion for Innovatio

- NewYork-Presbyterian

Percutaneous Access & Closure

Novel CLOSURE

Large Vessel Closure Landscape

COLUMBIA UNIVERSITY

MEDICAL CENTER

60

Vascular Closure of Large Hole

Femoral Access

 > 7 mm in diameter for percutaneous treatment of structural heart diseases

- 1. Suture-based
- 2. Suture + Plugs/Adhesives
- 3. Ipsi/contralateral Graft Placement

Sequential Step Indicator Window

4 Needles, 16Fr Separation

Capture Handle

Needle Pusher Handle

Shaft containing 4 needle pushers

Expandable coated nitinol net acts as foot to secure position of device and to capture needles

Atraumatic Distal Tip 6Fr to 10Fr Transition

VasoStitch

- Large bore vascular closure (12-24f)
- Suture mediated closure system delivered via coil inside artery
- Coil withdrawn to lay down suture and close access site
- Possible application for TA TAVR

Device Housing not shown to illustrate needle/suture deployment

(needle punctures in direction of blood flow)

Nitinol Needle (Free state)

Prolene Suture

Blood flow

MBIA UNIVERSITY

⊣ NewYork-Presbyterian

"Suture or Reducer Plus" Approach

Circumferential Tightening

Grip Technology: New Sealant for Vascular Closure

MynxGrip deployment on a porcine, carotid vessel

- Grip Technology is a new formulation of polyethylene glycol
- The Grip Tip portion of the MynxGrip sealant actively grips the artery
- MynxGrip achieves active extravascular closure
- Bioabsorbable sealant dissolves in <30 days, leaving nothing behind

Grip Technology for Large Hole Closure

- Single suture for approximation of arterial wound
- Grip provides seal over arteriotomy
- Certain Closure, minimum intravascular components

Ipsi/Contralateral Graft Approach

Frontier Vascular Closure Device

- Easy-to-use device, designed specifically for percutaneous Large Hole Closure
- Immediate secure closure for arteriotomies between 12 and 24F
- Over-the Wire System which utilises the Procedural Sheath
- Controls blood loss during deployment
- Fully Bioabsorbable, low profile, conforming Patch Graft design
- Simplifies and shortens procedure for both patient and physician

ProMed Device

Vascular Closure Device (VCD)

VCD in vessel

Bioabsorbable cover over thin frame nitinol scaffold (ispsilateral)

ProMed Device

- Facilitates standard interventional approach to closure
- Compatible with existing 18-24 F sheaths
- Utilizes a bioabsorbable covered scaffold that is fully protected by sheath until ready to deploy
- Minimal signature implant allows for re-intervention

Columbia University Medical Center

NewYork-Presbyterian

InSeal Intravascular Closure Device After biodegradation

Sealing membrane **Tether** (biodegradable) (biodegradable)

Nitinol frame

Stroke

Published on-line June 5, 2011 @ NEJM.org and print June 9, 2011

Editorial Response

EDITORIALS

Transcatheter Aortic-Valve Implantation — At What Price?

Hartzell V. Schaff, M.D.

In 2000, Bonhoeffer et al. described transvenous placement of a pulmonary-valve prosthesis and speculated that similar technology might be used in other cardiac valves, including the aortic position.¹ Two years later, the first transcatheter inpatients who are eligible for transfemoral insertion and may decrease vascular injury.

But the increased risk of stroke associated with transcatheter replacement, as compared with surgical replacement, is a special concern. Smith

Strokes (ITT) High Risk Cohort

Months Post Procedure

Numbers at Risk								
TAVR	348	287	249	224	162	65	28	
AVR	351	246	230	211	160	62	31	

Procedural Predictors of Mortality High Risk Cohort

Stroke	1		HR	[95% CI]	p-value
TAVR			2.76	[1.58-4.82]	<0.001
AVR			4.99	[2.85-8.75]	<0.001
Major Bleeding					
TAVR		—	2.14	[1.42-3.20]	<0.001
AVR		—	2.88	[1.99-4.14]	<0.001
Major Vascular					
TAVR	_	—	1.67	[1.04-2.70]	0.03
AVR			1.40	[0.57-3.44]	0.46
0.1	1		τu		

All Strokes (major and minor) at 30 Days & 1 Year

ITT Population

Diffusion-Weighted MRI Study

Philipp Kahlert, MD West German Heart Center Essen

Pre-TAVI

Post-TAVI

Example of an 82-year-old patient two days after successful TAVI

A Parcian for Innovat

- NewYork-Presbyterian

Embolic Protection Unanswered Questions

Questions

- Does it need to protect all head vessels?
- Does it need to capture material?
- Is it necessary in every patient?
- What endpoints should be used in studies?

Requirements

- Easy to use and low profile
- Shouldn't complicate access site management
- Should not require excessive arch manipulation

Cerebral Embolic Protection Devices Deflectors and Filters

SMT (15 pts) Embrella (20 pts)

Claret (40 pts)

Embolic Protection in TAVR

Ghanem et al, J Am Coll Cardiol 2010;55:1427–32 Astarci et al, Abstract presentation EACTS 2010

Columbia University Medical Center

Embolic Material after TAVR

PROTAVI - C

Medical Center

Paravalvular Regurgitation

PVL after TAVR Predicts Increased Mortality

Aortic regurgitation after transcatheter aortic valve implantation: incidence and early outcome. Results

inte

from

Moha

Tra sev

mo

Michae Alfried

Long-Term Outcomes After Transcatheter Aortic Valve Implantation in High-Risk Patients With Severe Aortic Stenosis

The U.K. TAVI (United Kingdom Transcatheter Aortic Valve Implantation) Registry

Neil E. Moat, MBBS, MS,* Peter Ludman, MA, MD,† Mark A. de Belder, MA, MD,‡ Ben Bridgewater, PHD,§ Andrew D. Cunningham, PHD,|||| Christopher P. Young, MD,¶ Martyn Thomas, MD,¶ Jan Kovac, MD,# Tom Spyt, MD,# Philip A. MacCarthy, BS, PHD,** Olaf Wendler, MD, PHD,** David Hildick-Smith, MD,†† Simon W. Davies, MBBS, MD,* Uday Trivedi, MBBS,†† Daniel J. Blackman, MD,‡‡ Richard D. Levy, MD,§ Stephen J. D. Brecker, MD,§§ Andreas Baumbach, MD,|| Tim Daniel, MB, CHB,¶¶ Huon Gray, MD,## Michael J. Mullen, MBBS, MD***

ith

of

Paravalvular Aortic Regurgitation (AT)

⁻ NewYork-Presbyterian

Aortic Regurgitation (AT)

- NewYork-Presbyterian

Procedural Predictors of Mortality

THE PARTNER TRIAL

Paravalvular AR and Mortality TAVR Patients (AT)

None-Tr	167	149	140	126	87	41	16
Mild-Mod-Sev	160	134	112	101	64	26	12

Total AR and Mortality TAVR Patients (AT)

None-Tr	135	125	115	101	68	31	11
Mild-Mod-Sev	199	164	143	130	86	39	18

Prevention and Treatment of AR Depends on Etiology

- Native Aortic valve morphology
 - Number of cusps
 - Symmetry/severity of calcification
- Undersizing of the THV
 - Annular measurement
- Malpositioning of the THV
 - Aortic root morphology
 - Mitral valve calcification
 - Sigmoid septum

Para-valvular Regurgitation

Devices with Reduced Paravalvular AR

Subannular Fixation

Space Fillers

current gen tissue skirts

paravalvular leak sites

paravalvular leak sites sealed

Endoluminal Sciences

A Passion for Innovation

Predicting Complications

Predicting Complications

- Complications such as annular rupture and coronary obstruction are low frequency events
- However, when they occur, they are often catastrophic
- Predictability of these complications is poor
- Ideally, these patients would be screened out or a different valve would be chosen

Risk of Coronary Occlusion

Annulus \rightarrow LM = 1.1 cm

LCC length = 1.4 cm

- Due to native leaflets obstructing LM
- Not solely dependent on LM height
- Other factors include:
 - Height of the Sinuses
 - Width of the Sinuses
 - Diameter and calcification of the sino-tubular junction (STJ)
 - Length of LCC

TAVR – Modeling Deployment

Medical Center

COLUMBIA UNIVERSITY

Coronary Artery Occlusion Can we predict?

Coronary Artery Position Variable

Coronary Artery Flow Can we predict?

• Pressure drop induced in TAV's wake (left)

- Drop in coronary flow per stroke
- Reduced percentage of cardiac output to coronary arteries
 - 5.14% down to 4.07%

SIMULATED VALVE DEPLOYMENT

Predicting Wall Stress

Modeling TAVR Can we predict AR?

A Passion for Innovation

⊣ NewYork-Presbyterian

Simulated Deformations of a "Generic" TAV

- 1. No stent-tip deflection ⁽¹⁾
- Thin leaflet Thin bovine and porcine pericardium of ~ 0.20 mm, modeled with <u>nonlinear</u>, <u>anisotropic Fung model</u>.

3. Asymmetric value deployment \rightarrow leaflet mal-coaptation ⁽²⁾

Simulations of a TAV device deformation

0.23 Stress (left) Oval 2500 --- Strain (right) 0.22 Stress (kPa) 0.21 2000 Strain Circular 0.20 143% 1500 0 19 59% 1000 0.18 e68-s1 e50-s1 e30-s1 e0-s0 e30-s2 e50-s2 e68-s2 **TAV Models**

TAV with thin pericardial leaflets and rigid stent has <u>higher strain</u> than surgical pericardial valve

Asymmetric TAV deployment has <u>higher stress/strain</u> than nominal circular TAV deployment

These high stresses/strains will have an impact on TAV device durability!

CARDIOVASCULAR RESEARCH F O U N D A T I O N A Passion for Innovation

Impact of Asymmetric Deployment

Planimetered area = 0.9 cm^2

CARDIOVASCULAR RESEARCH F O U N D A T I O N A Passion for Innovation

Iedical Center

OLUMBIA UNIVERSITY

Impact of Asymmetric Deployment

Planimetered area = 0.9 cm^2

CARDIOVASCULAR RESEARCH F O U N D A T I O N A Passion for Innovation

olumbia University Iedical Center

New York-Presbyterian

Modeling of TAVR : A Case Study

Aortic annulus

From 320-slice CT scanner

Patient Information and Clinical Observations

- 94-yo female with annulus size of 19.6mm
- Only the left coronary leaflet opens
- Calcification concentrates in right and non-coronary leaflets

TAVR RESULTS : A CASE STUDY

A size 23 Edwards SAPIEN valve was used. During TAVI procedure:

- Aortic root tearing happened and visualized <u>below</u> the left main coronary artery
- Open-heart valve surgery was performed

Finite Element Model Reconstructed from MSCT

Modeling of TAVR Deployment

Step: Step-1 Frame: 0 Total Time: 0.000000

Conclusions (1)

- Although TAVR procedural results have improved with acceptable outcomes, complications are still common and occasionally catastrophic
- Advances in access management (TA or TF) will simplify procedure and make it more generalizable -- However, careful studies will need to be done with this devices to determine if there are any long term implications with them
- Embolic protection is mandatory before we can expand indications for TAVR to a lower risk population – Studies to evaluate these devices will likely use surrogate endpoints

Conclusions (2)

- In the future, patient anatomy will be modeled pre-procedure to predict and likelihood of complications and choose appropriate device for patients
- In addition, long term follow-up will be needed to determine durability of these valves – Given deployment is often asymmetric and there are unknown forces on these leaflets, patients must be followed long term.

