
New Devices & Techniques In Carotid Artery Stenting: Clinically Meaningful?

Dr Sumaira Macdonald, MBChB (Comm.), FRCP, FRCR, PhD, EBIR
Consultant Vascular Radiologist
& Honorary Clinical Senior Lecturer,
Freeman Hospital,
Newcastle,
UK

Disclosures:

Research / Educational Grants & / or consultancy:

Abbott Vascular <u>Silk Road Medical</u>

CR Bard St Jude/AGA

Biotronik Spectranetics

Bridgepoint / EPS vascular Tryton Medical

Cordis (J & J) Pyramed

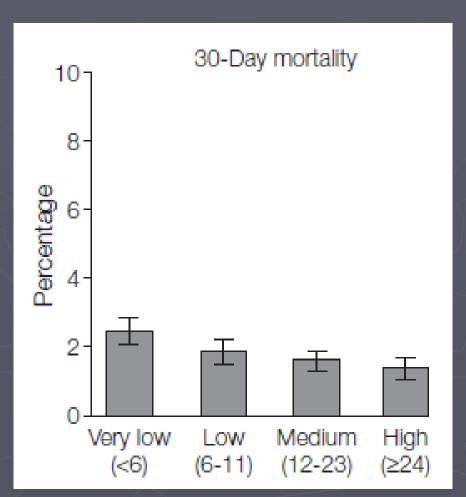
COOK Terumo

Ev3/Covidien Vascular Perspectives

Medtronic / Invatec Volcano

Merit Medical WL Gore

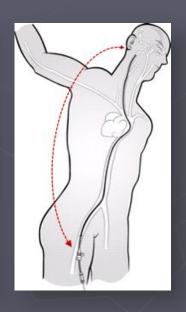
Prevailing Limitations Of CAS:

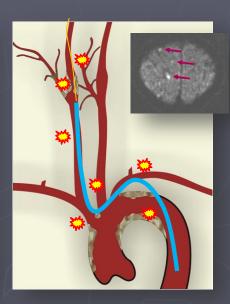

- Real world outcomes
- Excess minor stroke risk cf. CEA (may be age dependent)
- " <u>Day Zero</u> " Strokes for CAS cf. CEA
- " Off table " to 30-day strokes
- Excess DWMRI lesions
 of brain cf. CEA
 (may be age dependent)
- Anatomic constraints (largely "access " related & ? influenced by operator experience)

" Real World " CAS Outcomes:

Operator Experience and Carotid Stenting Outcomes in Medicare Beneficiaries

N = 24,701


Nallamothu BK et al JAMA 2011;28:1338-1343


Excess Minor Stroke:

CREST: Transfemoral Filter-Protected CAS

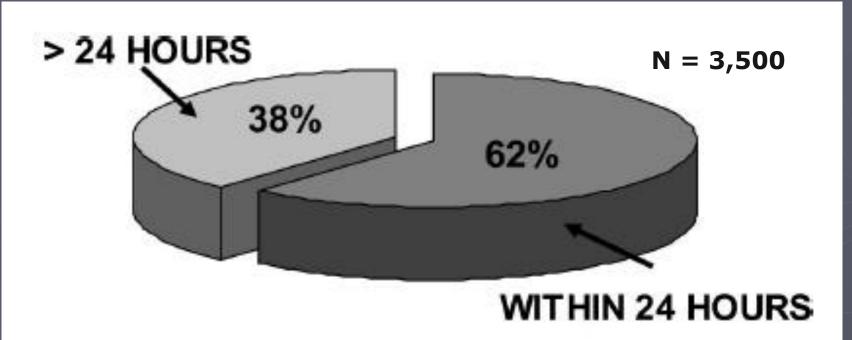
Major Unmet Needs	CEA	CAS	p
CREST Peri-procedural Stroke ¹	2.3%	4.1%	0.01

N Engl J Med 2010;363:11-23;

Short-term outcome after stenting versus endarterectomy for symptomatic carotid stenosis: a preplanned meta-analysis of individual patient data

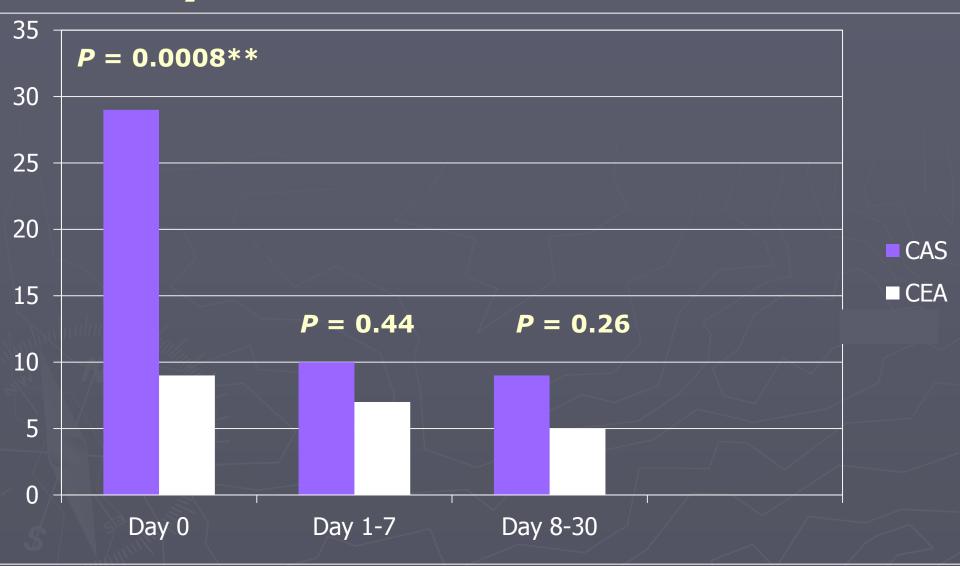
Carotid Stenting Trialists' Collaboration

	CAS (n=1725)	CEA (n=1708)	Risk ratio* (95% CI)	p value†	Risk difference* (95% CI)
Any stroke or death	153 (8.9%)	99 (5.8%)	1.53 (1.20 to 1.95)	0.0006	3·2 (1·4 to 4·9)
Disabling stroke or death	82 (4.8%)	64 (3.7%)	1.27 (0.92 to 1.74)	0.15	0-9 (-0-4 to 2-3)
All-cause death	32 (1.9%)	22 (1.3%)	1.44 (0.84 to 2.47)	0.18	0·7 (-0·2 to 1·5)
Any stroke	141 (8.2%)	84 (4.9%)	1.66 (1.28 to 2.15)	0.0001	3·3 (1·7 to 5·0)
Stroke severity‡					
Fatal	13 (0.8%)	6 (0.4%)	2·15 (0·82 to 5·65)	0.11	0·4 (-0·1 to 0·9)
Disabling	56 (3.2%)	43 (2.5%)	1.29 (0.87 to 1.90)	0.21	0.5 (-0.5 to 1.6)
Non-disabling	72 (4.2%)	36 (2.1%)	1.99 (1.34 to 2.95)	0.0004	2·0 (0·8 to 3·2)
Stroke type§					
Ischaemic	135 (7.8%)	71 (4-2%)	1.88 (1.42 to 2.48)	<0.0001	3.8 (2.2 to 5.4)
Haemorrhagic	6 (0-3%)	11 (0.6%)	0.54 (0.20 to 1.46)	0.21	-0·3 (-0·8 to 0·1)
Unknown	0	2 (0.1%)			
Stroke region§					
Ipsilateral carotid	126 (7.3%)	75 (4·4%)	1.66 (1.26 to 2.19)	0.0003	3·0 (1·4 to 4·5)
Contralateral carotid or vertebrobasilar	13 (0.8%)	9 (0.5%)	1.43 (0.61 to 3.34)	0.40	0·2 (-0·3 to 0·8)
Unknown	2 (0.1%)	0			


Lancet 2010; 376; 1062-1073

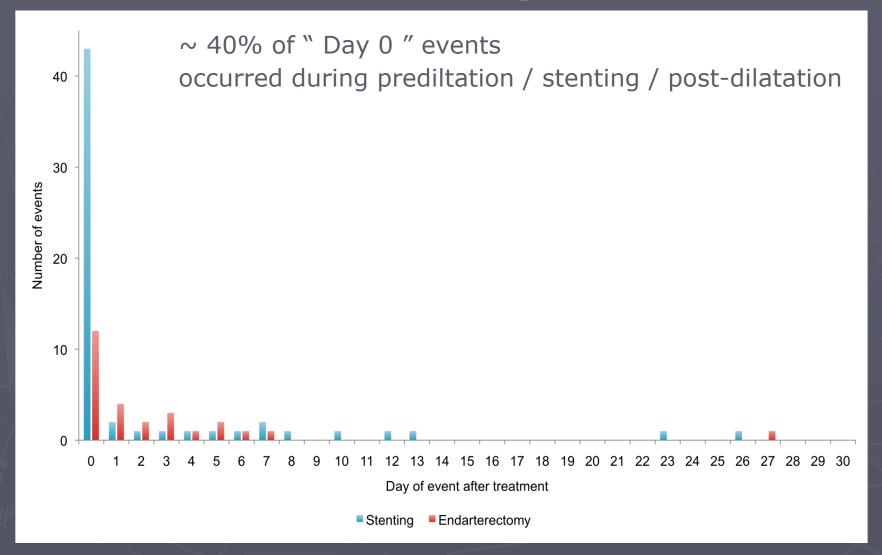
The Timing of Strokes & Their Proposed Aetiology:

Day Zero Strokes:


The CAPTURE Registry

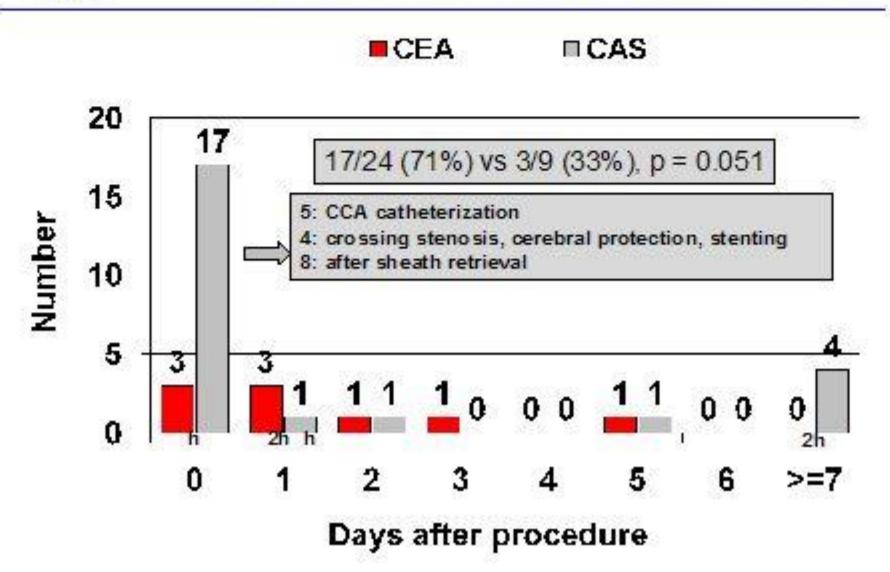
Analysis of Strokes Resulting From Carotid Artery Stenting in the Post Approval Setting: Timing, Location, Severity, and Type

* n= 168 patients; 2 patients each had two strokes Stroke timing.


" Day Zero " Strokes In CREST:

** p value for CREST only

Brooks et al. Circulation 2012


ICSS: Timing of first stroke after allocated procedure

EVA-3S: timing of procedural stroke

The Arch Is A Hostile Territory:

The incidence of microemboli to the brain is less with endarterectomy than with percutaneous revascularization with distal filters or flow reversal

Procedure	N	Incidence MES	Procedural Stage
CEA	15	15.3 (+/- 22)	Post procedure
Filter protected CAS	20	319.3 (+/- 110.3)	During protection
Flow reversal CAS	7	184.2 (+/- 110.5)	Pre protection

CEA vs filter p = 0.001CEA vs flow reversal p = 0.007Flow reversal vs filter p = 0.053

N = 42

Gupta N et al. JVS. 2011;53:316-322

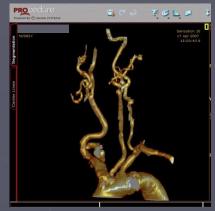
Assessment of Reverse Flow as a Means of Cerebral Protection during Carotid Artery Stent Placement with Diffusion-weighted and Transcranial Doppler Imaging

Finding	Reverse Flow	Filter-protected
	(n = 15)	(n = 15)
DWI scans in 24 h	29	24
Positive DWI scans (%)	17.2	29.0
Lesions on DWI	6	14
Total lesions (%)		
Ipsilateral ACA/MCA distal to stent	4/6 (67)	12/14 (86)
Ipsilateral PCA and contralateral ACA/MCA or PCA territories	2/6 (33)	2/14 (14)

Non-target territory embolization implies embolic burden of the arch & great vessel origins from a transfemoral approach with a 9F sheath

Stephen D. Goode, MRCS, FRCR, PhD, Nigel Hoggard, MD, MRCP, FRCR, Sumaira Macdonald, FRCR, PhD, David H. Evans, PhD, DSc, Trevor J. Cleveland, FRCS, FRCR, and Peter A. Gaines, FRCP, FRCR

Anatomic Constraints:

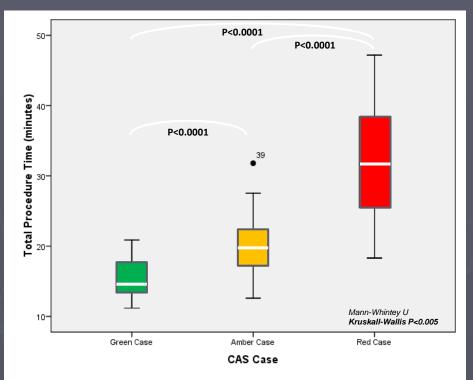


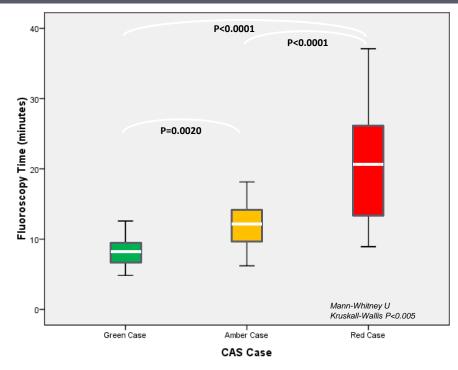
Complex CAS Anatomy: Dictated By Arch Type:

Green

Amber

Left ICA score 5.0-5.9


Red


Right ICA score > 7.0

Macdonald S et al. Stroke 2009; 40: 1698-703

Total Procedure Time (mins)

Fluoroscopy Time (mins)

Red case: 10/20 > 15 minutes to cannulate CCA

Amber case: 2/20 Green case: 0/20

Willaert W et al. J Vasc Surg 2012; 56(6): 1763-70

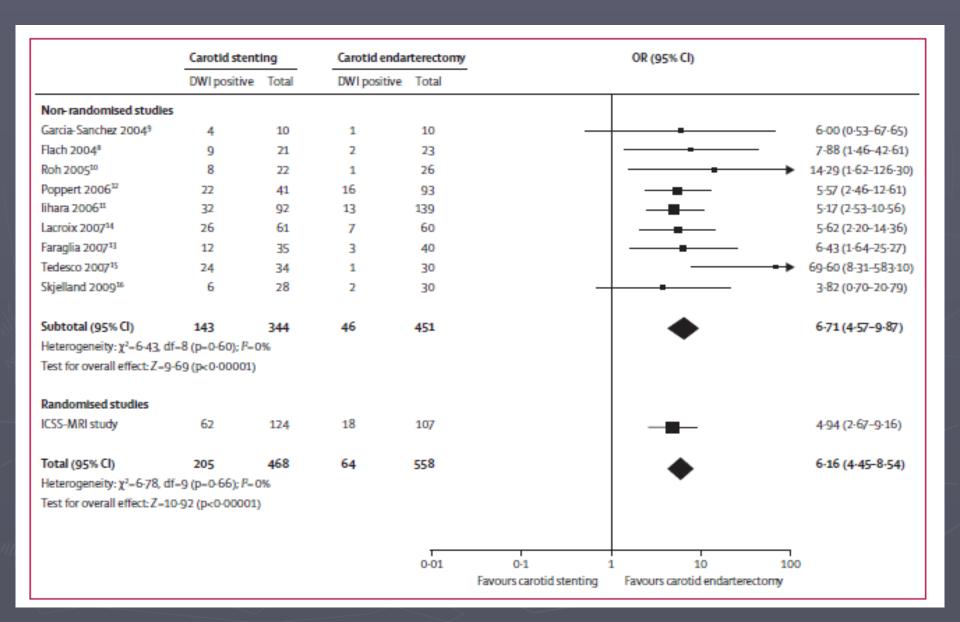
The Timing of Strokes & Their Proposed Aetiology:

≤ 30-Day Strokes:

Delayed Stroke & Death At 1-30 Days Especially with Open Cell Stents

	Total population			
	Patients	All events	Post-procedural events	
Open cell	937	39	32	
Closed cell Total	2242 3179	51 90	29 2/3 of eddelayed	
Cell type Open cell Closed cell Total	3179	4.2% 2.3% 2.83%	3.4% 1.3% 1.9%	

Increased Neurologic Events With Open Cell Stents SPACE Trial


Table 4.	Influence	of	Different	Stent	Types	on	0E Rate
----------	-----------	----	-----------	-------	-------	----	----------------

Stent	Wallstent	Acculink	Precise
No. of patients	436	92	35
Pat. with OE	24	9	5
0E rate (95% Cl)	5.5% (3.6–8.1%)	9.8% (4.6–17.8%)	14.3% (4.8–30.3%)

Combined OE rate: 11.0% (6.2–17.8%)

Excess DWMRI Lesions:

Meta-Analysis Comparing DWMRI Lesions After CEA & CAS

ICSS Primary Analysis CEA Vs. CAS in 1713 symptomatic patients

ICSS Substudy: N = 231

New white lesions on DWI

62 of 124 (50%) transfemoral distal filter CAS

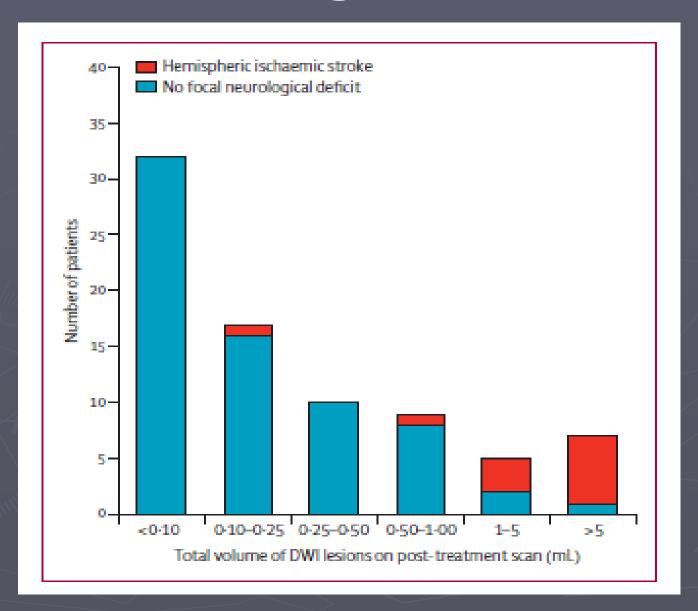
18 of 107 (17%) CEA

(OR 5.21, 2.78-9.79; p < 0.0001)

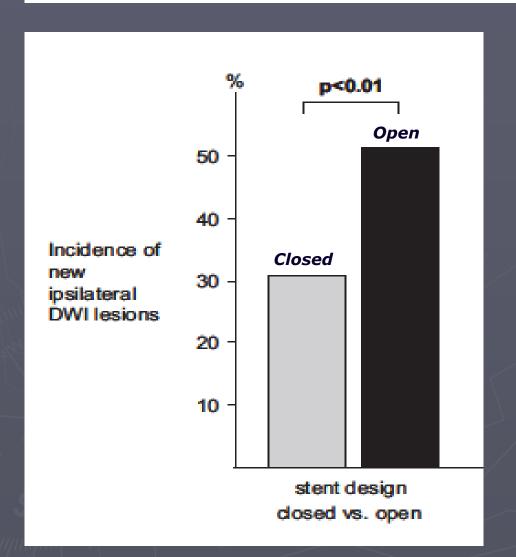
Lancet Neurol. 2010 Apr;9(4):353-62

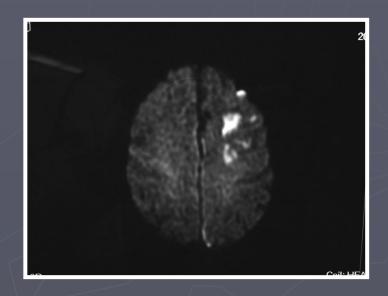
ICSS Substudy: N = 231

Recurrent stroke OR TIA (5 year cumulative)

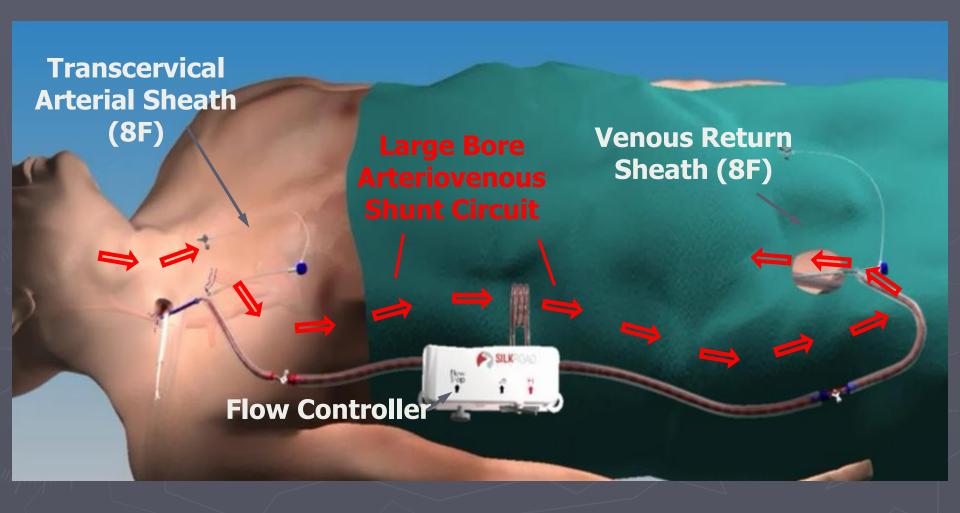

CAS:

DWMRI +ve: 12/62


DWMRI -ve: 6/62


22.8% vs. 8.8% (p=0.04) HR 2.85 (1.05-7.720

Association of DWMRI Lesion Volumes & Neurological Events


New Brain Lesions After Carotid Stenting Versus Carotid Endarterectomy: A Systematic Review of the Literature

The potential of new technology to solve the remaining limitations of CAS

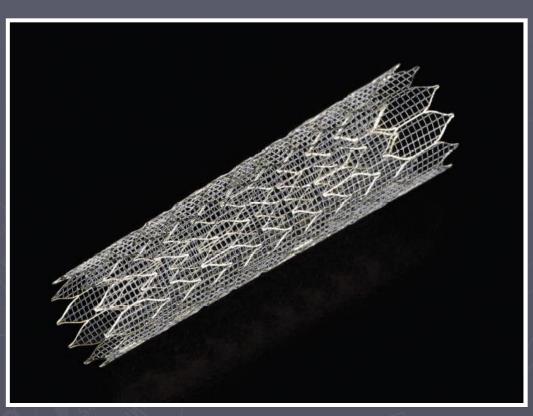
MICHI™ Neuroprotection System

PROOF: FIRST IN MAN

DWI SUBSTUDY

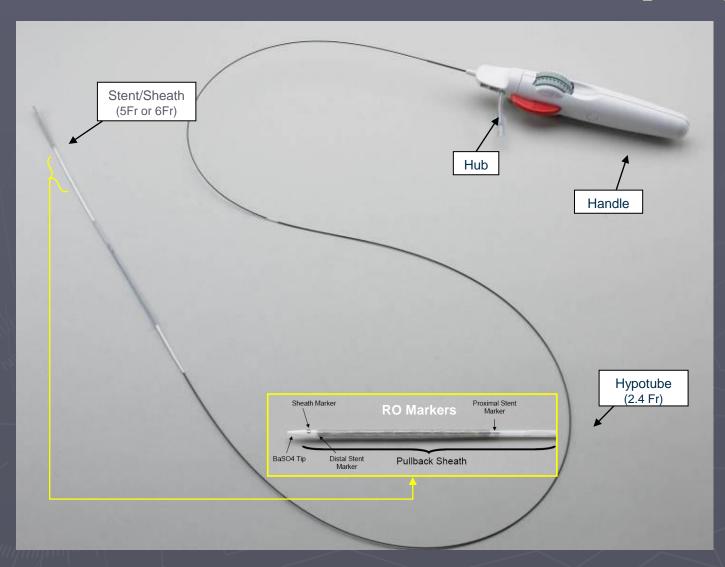
- Baseline scan within 72 hours
- Post-procedure scan within 12-48 hours
- Submitted to core laboratory for blinded evaluation by two independent neuroradiologists

Parameter	Value (n=56)
Subjects with new DW-MRI lesion(s)	11 (19.6%)


Prospective DWMRI outcomes for various carotid interventional regimes:

Study	Procedure	Embolic Protection	# subjects	% w/ New DWI Lesions
ICSS ¹	Transfemoral CAS	Distal filter (various)	51	73
ICSS ¹	CEA	Clamp, backbleed	107	17
PROFI ²	Transfemoral CAS	Distal filter (Embosheild)	31	87
Leal ⁵	Transfemoral	Distal Filter (FilterWire)	33	33
PROFI ²	Transfemoral CAS	Proximal occlusion (MoMA)	31	45
DESERVE ⁴	Transfemoral CAS	Proximal Occlusion (MoMa)	127	30
PROOF ³	Transervical CAS	High flow rate flow reversal	48	16.7
Leal ⁵	Transervical CAS	Flow Reversal	31	12.9
1 Lancet Neurol. 2010 Apr;9(4):353-62 4. Rubino P, EuroPCR 2011 2. J Am Coll Cardiol. 2012;59:1383-1389 5. JVS 2012;56:1585-1590 3. JVS 2011;54:1317-1323				

Prevailing Limitations Of CAS:


- Real world outcomes
- Excess minor stroke risk cf. CEA (may be age dependent)
- " <u>Day Zero</u> " Strokes for CAS cf. CEA
- " Off table " to 30-day strokes
- Excess DWMRI lesions
 of brain cf. CEA
 (may be age dependent)
- Anatomic constraints (largely "access " related & ? influenced by operator experience)

GORE® Carotid Stent The Next Generation

- Open cell nitinol frame
- Closed cell 500 µ lattice on outside of frame
- Permanently bound CBAS heparin on all device surfaces

Carotid Stent Delivery System

Attributes

- Single handed delivery
- •5Fr Introducer Sheath Compatible (White Tip)
- •6Fr Introducer Sheath Compatible (Gray Tip)
- Hypotube Design
 - Allows for complete closure of hemostatic valve
- •135 cm Working Length
- •30 cm Rx

*CAUTION: Investigational Device. Limited by United States Law to Investigational use only.

Prevailing Limitations Of CAS:

- Real world outcomes
- Excess minor stroke risk cf. CEA (may be age dependent)
- " <u>Day Zero</u> " Strokes for CAS cf. CEA
- " Off table " to 30-day strokes
- Excess DWMRI lesions
 of brain cf. CEA
 (may be age dependent)
- Anatomic constraints (largely "access " related & ? influenced by operator experience)

