Interventional Management of Cardiogenic Stroke

Robert J. Sommer, MD

Director, Invasive Adult Congenital Heart Disease Columbia University Medical Center New York, New York

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

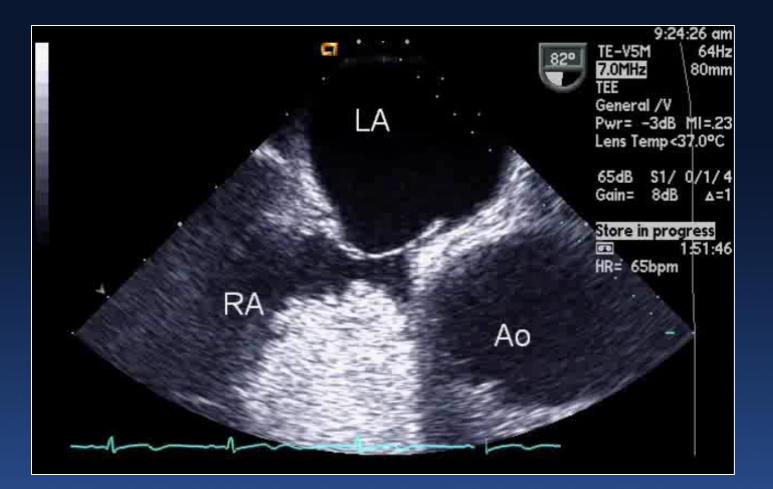
Affiliation/Financial Relationship

- Stock Option Holder
- Principal Investigator REDUCE
- ✓ Investigator Cardiox 5
- Consultant

Company

- Coherex Medical
- ✓ WL Gore Medical
- Cardiox Medical
- ✓ DC Devices

What is Cardiogenic Stroke?


✓ Thromboembolic/ischemic cerebral infarct with origin of thrombus from the heart

- Exclude aortic plaque, carotid disease
- Includes:
 - -Mitral or aortic valve vegetation
 - -LV mural thrombus
 - -Hypercoagulable conditions
 - -Patent Foramen Ovale, paradoxical embolization
 - -Atrial Fibrillation / Left atrial appendage thrombus

Intervention for Patent Foramen Ovale (PFO)

TEE with Agitated Saline Injection

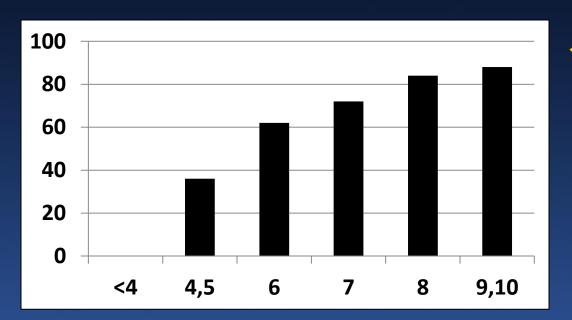
Is PFO really the source?

Is PFO the source?

An index to identify stroke-related vs incidental patent foramen ovale in cryptogenic stroke **RoPE Study**

Meta-analysis using Bayes Theorem
 A risk assessment score, similar to CHADS
 Scale 0 – 10

- Lose points for every decade of age >30 70
- Lose points for known stroke risk factors (i.e. HTN, DM, smoking, prior stroke)


In Partnership with the ACC Reinventing the Future Every Year

Kent et al. Neurology 2013;81:619-25.

Is PFO the source?

An index to identify stroke-related vs incidental patent foramen ovale in cryptogenic stroke **RoPE Study**

 In the youngest, healthiest patients, the probability that the PFO was the source is as high as 88%.

CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation

Kent et al. Neurology 2013;81:619-25.

What are the options to prevent recurrence?

Treatment of PFO After Stroke Options?

Surgical closure:

- Higher complication rates
- Closure rates not different
- Longer hospitalization
- Longer recovery
- More pain, infection, transfusion

Anti-platelet therapy

Anti-coagulation

PFO – Stroke: Do Blood Thinners Really Work?

Effect of Medical Treatment in Stroke Patients With Patent Foramen Ovale

Patent Foramen Ovale in Cryptogenic Stroke Study

Shunichi Homma, MD; Ralph L. Sacco, MD, MS; Marco R. Di Tullio, MD; Robert R. Sciacca, EngScD; J.P. Mohr, MD; for the PFO in Cryptogenic Stroke Study (PICSS) Investigators*

	Warfarin	Aspirin	p-value
Recurrent event at 2 years	16.5%	13.2%	0.49

Circulation. 2002;105:2625-2631.

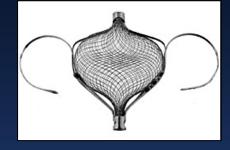
PFO – Stroke: Do Blood Thinners Really Work?

	Warfarin	Aspirin	p-value
Recurrent event at 2 years	8.1%	6.7%	0.63

Furlan et al. N Engl J Med 2012;366:991-9.

Interventional Approach

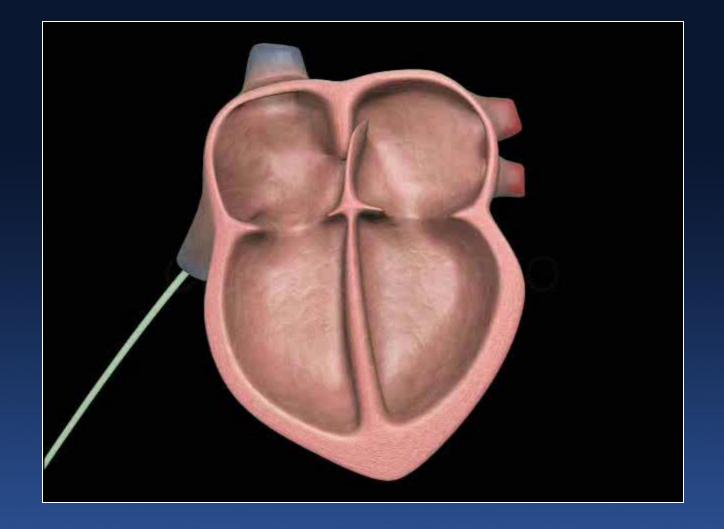
Reinventing the Future



PFO Closure Devices

Intra-tunnel Devices

RF Energy Fusion



Double Disk Occluders

Transcatheter Closure of PFO

Transcatheter Closure of PFO

In experienced hands:

- ~ 20 minute ambulatory procedure
- Conscious sedation
- Femoral venous access only
- 100% implantation rate
- Fewest complications of any cath lab intervention
- Dual anti-platelet therapy for 3 months
- Back in the gym in < 1 week

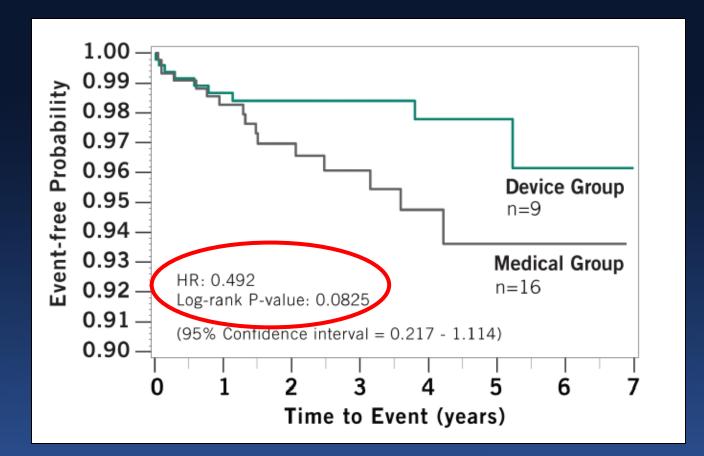
Does PFO Closure Work?

Reinventing the Future

RESPECT Trial

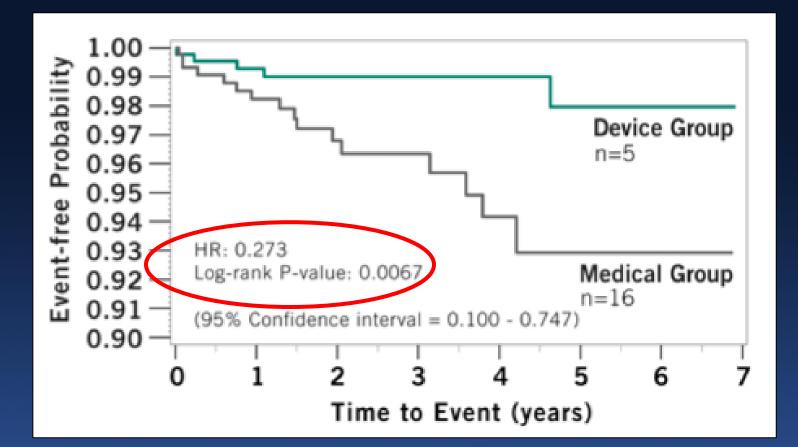
Randomized, controlled superiority trial:

- PFO closure with aspirin
- Medical Therapy alone


Primary Endpoint: Recurrent Stroke

Carroll et al. N Engl J Med 2013;368:1092-100.

RESPECT Trial – Results Primary Endpoint Analysis – ITT Cohort


RESPECT Trial – Results Primary Endpoint Analysis

 3/9 pts with recurrent strokes in the closure arm had not undergone a closure procedure at the time of the endpoint event.

RESPECT Trial – Results Primary Endpoint Analysis – "As Treated"

Grouped by treatment received

RESPECT Trial – Results Multivariate Risk Analysis

Subgroup	Device Group	Medical Group	Hazard Ratio an	d 95% Cl		Pvalue (Log Rank)	Interaction Pvalue
no. of patients/total number (%)							
Overall	9/499 (1.8%)	16/481 (3.3%)		4	0.492 (0.217, 1.114)	0.0825	
Age							0.5156
- 18-45	4/230 (1.7%)	5/210 (2.4%)			0.698 (0.187, 2.601)	0.5901	
- 46-60	5/262 (1.9%)	11/266 (4.1%)	· · · · ·	H :	0.405 (0.140, 1.165)	0.0828	
Sex							0.7312
- Male	5/268 (1.9%)	10/268 (3.7%)		+ +	0.448 (0.153, 1.311)	0.1321	
- Female	4/231 (1.7%)	6/213 (2.8%)	⊢		0.571 (0.161, 2.024)	0.3789	
Shunt Size							0667
- None, trace or moderate	7/247 (2.8%)	6/244 (2.5%)			1.034 (0.347, 3.081)	0.9527	
- Substantial	2/247 (0.8%)	10/231 (4.3%)	· · · · • · · · · · · · · · · · · · · ·		0.178 (0.039, 0.813)	0.0119	
Atrial septal aneurysm							.1016
- Present	2/180 (1.1%)	9/169 (5.3%)		1	0.187 (0.040, 0.867)	0.0163	
- Absent	7/319 (2.2%)	7/312 (2.2%)			0.889 (0.312, 2.535)	0.8259	
Index infarct topography							.3916
- Superficial	5/280 (1.8%)	12/269 (4.5%)	⊢ ∎−−		0.366 (0.129, 1.038)	0.0487	
- Small Deep	2/57 (3.5%)	1/70 (1.4%)	· · · · ·		1.762 (0.156, 19.93)	0.6429	
- Other	2/157 (1.3%)	3/139 (2.2%)	-		0.558 (0.093, 3.340)	0.5167	
Planned medical regimen							0.1966
- Anticoagulant	4/132 (3.0%)	3/121 (2.5%)			1.141 (0.255, 5.098)	0.8628	
- Antiplatelet	5/367 (1.4%)	13/359 (3.6%)	⊢ ■	1	0.336 (0.120, 0.944)	0.0299	
		0.	01 0.1 Favors Device	1 10 Favors Medical	2		24

in Partnership with the ACC Reinventing the Future Every Year

Is it safe?

In Partnership with the ACC Reinventing the Future Every Year

Transcatheter Closure of PFO Is it Safe?

Event	Device Group N=499 n (%)	Medical Group N=481 n (%)	P-value ⁷
Thrombus on device	0 (0%)	N/A	N/A
Device embolization	0 (0%)	N/A	N/A
Atrial fibrillation ¹	3 (0.6%)	3 (0.6%)	1
Transient ischemic attack (TIA)	3 (0.6%)	3 (0.6%)	1
Major bleeding	8 (1.6%)	9 (1.9%)	0.810
Pericardial tamponade (procedure related) ²	2 (0.4%)	N/A	N/A
Major vascular complications	4 (0.8%)	0 (0%)	0.124

RESPECT Trial Results

art of innovation

Who should have a PFO Closure?

In Partnership with the ACC Reinventing the Future Every Year

PFO – Stroke Who should have interventional therapy?

 Consider after first stroke event only – most patients with PFO will never stroke

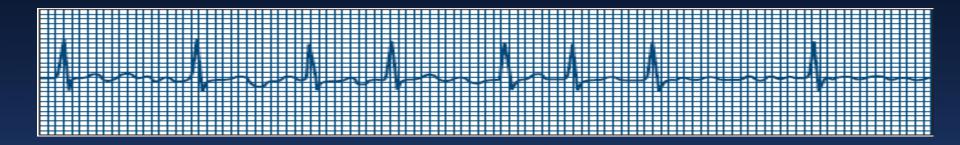
> DiTullio et al. JACC 2013;62:35-41. Petty et al. Mayo Clin Proc. 2006;81:602-8.

 Consider for pts with large shunt/ASA after peripheral ischemic infarct (RESPECT)
 Carroll et al. N Engl J Med 2013;368:1092-100.

PFO – Stroke Who should have interventional therapy?

 Consider for young healthy patients without traditional stroke risks

Kent et al. Neurology 2013;81:619-25.


 Consider after recurrent event while on blood thinner therapy

> Italian Consensus Paper: Pristipino et al. Cath CV Interv 2013;82:122-9.

Interventional Management of Chronic Atrial Fibrillation

What are the options for prevention of recurrent stroke in patients with AF?

Stroke Prevention in AF Options?

Anti-arrhythmics:

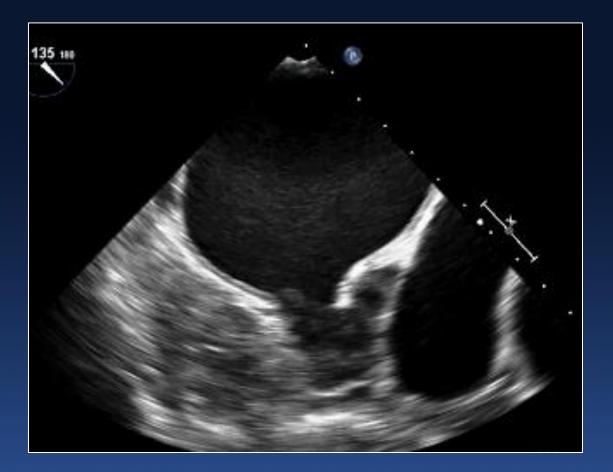
- Low efficacy even in the best
- Serious potential toxicity

Transcatheter Ablation

- <50% success in persistent AF</p>
- Multiple attempts may be required
- 2-12% complications for each try

Fuster. Eur Heart J. 2006;27:1979-2030.

Stroke Prevention in AF Options?


✓ Surgical MAZE

- Risks, pain, recovery of open heart surgery
- Potential recurrence
- Oral anti-coagulation (GOLD STANDARD)
 Risks of bleeding
 Dietary restrictions (warfarin)
 Blood testing (warfarin)

Fuster. Eur Heart J. 2006;27:1979-2030.

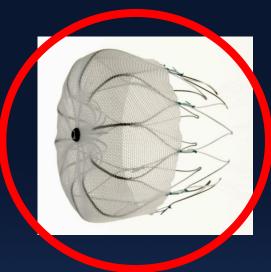
TEE in Atrial Fibrillation

LAA "Smoke"

LAA as a Source in AF

✓ 91% of identified thrombus found in the LAA

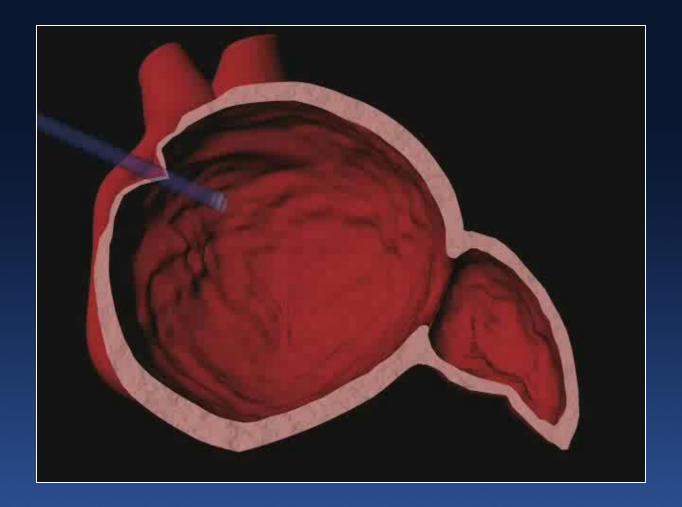
Blackshear. Ann Thor Surg 1996;61:755-9.


Exclusion of the LAA becomes an attractive therapeutic strategy.

Endocardial LAA Plugs

Watchman

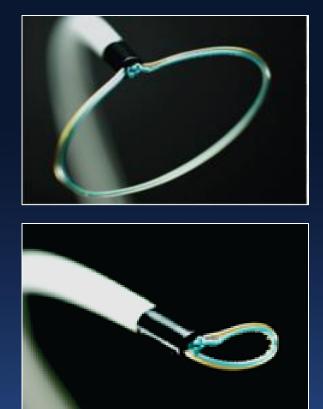
WaveCrest


CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation

ACP

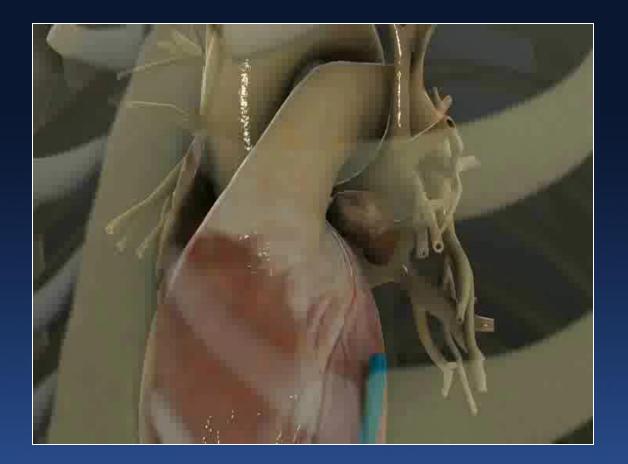
PLAATO

Watchman Implantation



In Partnership with the ACC Reinventing the Future Every Year

Epicardial Approach



SentreHeart Lariat Device Transcatheter Approach

Lariat Device Movie

Does LAA Exclusion Work?

PROTECT AF Trial

 Randomized, controlled trial, non-inferiority and superiority analysis:

LAA Exclusion with aspirin therapy
On-going Warfarin

 Primary Efficacy Endpoint: Recurrent Stroke, CV Death, Systemic Embolization

PROTECT AF – 4 Year Data Results

✓ Efficacy Endpoints:

- 39/1720.2 pt-yrs Watchman
- 34/900.8 pt-yrs Warfarin
- Hazard Ratio 0.60 [95% CL 0.41 1.05]
- Non-inferiority > 0.999, Superiority >0.960

Hemorrhagic Stroke: Hazard Ratio = 0.15 [95% CL 0.03 – 0.49]

25 In Partnership with the ACC Reinventing the Fut Every Year

Reddy et al. Presented at HRS 2013.

PROTECT AF – 4 Year Data Results

✓ CV Mortality:

Hazard Ratio 0.40 [95% CL 0.23 – 0.82]

✓ All Cause Mortality:

• Hazard Ratio 0.66 [95% CL 0.45 – 0.98]

Watchman is superior to Warfarin.

Reddy et al. Presented at HRS 2013.

SentreHeart Lariat

Closure rates are good No stroke prevention data to date

Who should have LAA Exclusion?

Interventional Exclusion/Closure of LAA Who should have it?

Active young AF patients with CHADS₂ > 2, who would otherwise need OAC

Interventional Exclusion/Closure of LAA Who should have it?

Patients with high risk of bleeding, or history of hemorrhage on OAC

In Partnership with the ACC Reinventing the Future Every Year

Conclusions

 ✓ AF exists in 35 million people in the US and will increase as the population ages.

✓ PFO exists in twice as many.

 Cardiogenic stroke prevention is an important health care priority.

