Treatment of vertebrobasilar fusiform aneurysms
Chicago Approach
VertebroBasilar Fusiform Aneurysms

Rare... but...

one of the most formidable vascular lesions encountered
VB Fusiform Aneurysms

- < 2% of all intracranial aneurysms
- Strong association with hypertension
- Presentation:
 - Ischemic stroke
 - Hemorrhagic stroke
 - Compression (Mass effect)
 - Brainstem, CN palsies, Hydrocephalus

- Poor natural history
 - Increased risk of stroke
 - Median survival 7.8 years
1990’s – Magic wall self expanding stent
From bench research to clinical application of flow diversion
Incredible case and wonderful clinical outcome

Pre- stent 3 months follow-up post stent
1990’s other cases not so successful

Problems:

1. Access
2. Lack of neuro devices
3. Timing of surgery
4. Best antiplatelet and anticoagulation
5. No intravascular imaging
How about Flow Diverters?

“Home made”

The real “thing”
FD in posterior circulation

Bad outcomes reported!

<table>
<thead>
<tr>
<th>Case</th>
<th>Pre op mRS score</th>
<th>Post op stroke</th>
<th>Post op mRS score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>no</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>yes</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>yes</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>yes</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>yes</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>yes</td>
<td>6</td>
</tr>
</tbody>
</table>

Siddiqui et al. JNS 116: 1258-1266, 2012
Illustration showing a **fusiform thrombosed holobasilar aneurysm** with multiple patent branches on the walls of the aneurysm with preserved flow in them through the thrombus.

These aneurysms are not good candidates for flow diversion and carry a high risk of brainstem stroke.
Can you use flow diverters for both?

Carotid

Basilar
Learning Curve of FD

Data from intrePED registry

Adverse event rates drop with experience (learning curve)
IntrePED (International Retrospective Study of the Pipeline Embolization Device: A Multi-center Aneurysm Treatment Study)

<table>
<thead>
<tr>
<th>Design</th>
<th>Multi-center, retrospective, post-market registry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Determine the incidence of important safety outcomes in patients who have undergone Pipeline™ embolization for intracranial aneurysms in a true clinical setting</td>
</tr>
<tr>
<td>Primary Endpoint</td>
<td>Rate of neurologic adverse events after treatment with Pipeline™</td>
</tr>
<tr>
<td>Population & Sample Size</td>
<td>906 Aneurysms in 793 patients treated with the Pipeline™ since approval</td>
</tr>
<tr>
<td>Sites</td>
<td>17 centers worldwide</td>
</tr>
</tbody>
</table>

![Graph showing neurological mortality and M&M rates](image_url)

- **Neurological Mortality Rate**
 - 3.8% (30/793)
 - 8.4% (67/793)

- **Neurological M&M**
 - 3.8% (30/793)
 - 8.4% (67/793)
<table>
<thead>
<tr>
<th>Patient Characteristics</th>
<th>Posterior Circulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Aneurysms</td>
<td>95</td>
</tr>
<tr>
<td>Number of Patients</td>
<td>91</td>
</tr>
<tr>
<td>Follow-up duration (median)</td>
<td>22.4 +/- 10.5</td>
</tr>
<tr>
<td>Procedure time (min)</td>
<td>88.0 (34 – 294)</td>
</tr>
<tr>
<td>Mean +/- SD (N)</td>
<td>98.3 +/- 51.4 (85)</td>
</tr>
<tr>
<td>Location</td>
<td>Saccular</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>PCA</td>
<td>2 (13.3)</td>
</tr>
<tr>
<td>BA</td>
<td>22 (50.0)</td>
</tr>
<tr>
<td>VA</td>
<td>7 (21.2)</td>
</tr>
<tr>
<td>PICA</td>
<td>3 (100.0)</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
</tr>
</tbody>
</table>
IntrePED posterior circulation

<table>
<thead>
<tr>
<th>Major Complications</th>
<th>Fusiform</th>
<th>Dissecting</th>
<th>Saccular</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurological morbidity</td>
<td>5/26 (19.2%)</td>
<td>1/26 (3.9%)</td>
<td>2/35 (5.7%)</td>
<td>0/4 (0%)</td>
</tr>
<tr>
<td>Neurological mortality</td>
<td>3/26 (11.5%)</td>
<td>1/26 (3.9%)</td>
<td>3/35 (8.6%)</td>
<td>0/4 (0%)</td>
</tr>
<tr>
<td>Neurological morbidity & mortality</td>
<td>7/26 (26.9%)</td>
<td>1/26 (3.9%)</td>
<td>4/35 (11.4%)</td>
<td>0/4 (0%)</td>
</tr>
</tbody>
</table>
Summary and Conclusion

- Major complications after PEDs treatment in posterior circulation aneurysms were ischemic stroke in 6, hemorrhage in 2, spontaneous aneurysm rupture in 1, and death in 7 patients among 91 patients with 95 posterior circulation aneurysms treated.
- Use of PEDs ≥ 3 was a strong predictor for morbidity and mortality after placement of Pipeline Flow Diverter in patients with posterior circulation aneurysms.
- Fusiform aneurysms were also a predictor for morbidity and mortality after placement of PEDs in posterior circulation.
Reports of flow diversion for posterior circulation aneurysms

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>No. of Patients</th>
<th>No. of Fusiform Aneurysms</th>
<th>No. of Ischemic Complications (%)</th>
<th>No. of Hemorrhagic Complications (%)</th>
<th>No. of Disabilities Related to PEDs (%)</th>
<th>No. of Deaths Related to PEDs (%)</th>
<th>Mean FU (mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips et al., 2012 (3 centers)</td>
<td>32</td>
<td>20</td>
<td>3 (9.4)</td>
<td>2 (6.3)</td>
<td>3 (9.4)</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Siddiqui et al., 2012</td>
<td>7</td>
<td>3</td>
<td>5 (71.4)</td>
<td>2 (28.6)</td>
<td>1 (14.3)</td>
<td>2 (28.6)</td>
<td>4.5</td>
</tr>
<tr>
<td>Chalouhi et al., 2013</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Toth et al., 2015</td>
<td>6 (7 aneurysms)</td>
<td>2</td>
<td>3 (50)</td>
<td>0</td>
<td>2 (33)</td>
<td>1 (16.6)</td>
<td>14.5</td>
</tr>
<tr>
<td>Munich et al., 2014</td>
<td>12</td>
<td>12</td>
<td>4 (33)</td>
<td>0</td>
<td>3 (25)</td>
<td>1 (8.3)</td>
<td>11</td>
</tr>
<tr>
<td>Buffalo series, 2014</td>
<td>12</td>
<td>12</td>
<td>1 (8.3)</td>
<td>0</td>
<td>1 (8.3)</td>
<td>0</td>
<td>22</td>
</tr>
</tbody>
</table>
Chicago experience on endovascular treatment of vertebrobasilar aneurysms

Nov 2014
Approach: Hybrid stent/FD overlapping construct staged contralateral VA sacrifice and or coiling of aneurysm

Goals:

1) Variable Arterial Coverage
2) Gradual aneurysm thrombosis

Increased Safety?
Technical Considerations

1) Protection of perforating arteries:
 - rostral basilar artery may contain a higher density of perforating arteries
 - these arteries may be more sensitive to changes in flow dynamics and acute aneurysm thrombosis
 - territories served by these arteries may have more severe clinical manifestations when perforators are occluded

2) Staged contralateral vertebral artery occlusion

3) Anti-platelet therapy:
 - confirmation of platelet inhibition
 - strict adherence to dual agent anti-platelet therapy
63 year old female presented with right facial droop, dysarthria, and right tinnitus

Medical history: Hypertension & Obesity
1st Stage

- Build a hybrid construct with Enterprise and Pipeline across both aneurysms

2nd Stage

- Coiling of sidewall aneurysm and possible sacrifice of right vertebral artery
1st Stage

4/19/2013 Placement of PED and enterprise (Hybrid construct)
2nd Stage

6/7/2013

Light coiling of AICA aneurysm

Decided not to occlude contralateral vertebral artery
12 months follow up
9/20/13 Keep close imaging follow-up!!!!
• HPI: Patient 53yo male with history of right side headache in 2013.
• CT showed fusiform basilar aneurysm, no SAH.
• Physical exam: neuro intact
• Several interventional procedures since than.
50 y/o man presenting with headaches and diplopia

2/13/13 1st Step placement of PED proximal to AICAs
2/13/2013 – Placing enterprise stent distal to PED
Hybrid Construct – Enterprise and PED

2/13/2013
2 months after the initial procedure, the patient presented with recurrence of symptoms

Headaches and worsening in diplopia
Staged occlusion of contralateral vertebral
4/4/2013
Right VA occlusion Stage 2
10/17/2013
Stent-assisted coil embolization of “new” aneurysm
10/17/2013
Stent-assisted coil embolization of recurrent aneurysm
Final device count: Two enterprise stents + 1 PED + Coils
10/17/2013
Staged FD + Stent-assisted coil embolization

Final device count: Two enterprise stents + 1 PED + Coils
10/17/2013
Staged FD + Stent-assisted coil embolization
Final device count: Two enterprise stents + 1 PED + Coils
12 months follow up
• HPI: Patient 54yo female with history of headaches for 2 years.
• CT/MRI showed tortuous fusiform aneurysm of the basilar artery.
• Parafalcine and right parietal meningioma.
• Physical exam: decrease sensation of left side of face, left arm and chest.
• Had right parietal craniotomy for tumor resection in 06/03/2013.
Day of Treatment

Pre Stent Deployment 3D DSA fused with post-stent deployment DynaCT Micro

Notice vessel deformation from device placement
Basilar artery aneurysm s/p Pipeline-Enterprise hybrid construct
6 month angiogram revealed residual filling of aneurysm
Discontinued dual anti-platelets
Follow-up DSA demonstrating positive remodeling of aneurysm sac and preservation of branches
mRS=0
Follow Up

5s 3D DSA Dual-Volume

DynaCT Micro
2nd Follow Up

Excellent Neck Coverage and Good Wall Apposition
A few important points for the future...
<table>
<thead>
<tr>
<th>Stent</th>
<th>Approximate Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroform, Enterprise</td>
<td>6%</td>
</tr>
<tr>
<td>Liberty, Lvis</td>
<td>15%</td>
</tr>
<tr>
<td>PED, Silk, Fred, Surpass, P64</td>
<td>30%</td>
</tr>
</tbody>
</table>
PRU range $>50 < 210$

Dormant Platelets

Activated Platelets
Developing intravascular imaging with OCT for brain vessels
<< 29.9 mm, 5.0 mm/sec
MCA – Lenticulostriate perforators
Flow - Diverter

Self-expanding Stent
Thromboembolic Risk

- PRU>208 + procedure > 116 min – high risk
- PRU<208 + procedure > 116 min – moderate risk
- PRU>208 + procedure < 116 min – moderate risk
- PRU<208 + procedure < 116 min – low risk

Thromboembolic complications with Pipeline Embolization Device placement: impact of procedure time, number of stents and pre-procedure P2Y12 reaction unit (PRU) value.
What about patients with ventriculostomy?

• Technique for shunt
 – Expose ventriculostomy burr hole
 – Cut ventriculostomy catheter and discard proximal section
 – Attach shunt valve directly to original ventriculostomy catheter

• No movement of ventriculostomy catheter
Intraoperative Monitoring

Have all the “amenities” that we have for clipping

Motor VER SSEP EEG
8 Overlapping Pipeline stents
Angioplasty within Pipeline
Device/Vessel Mismatch Behavior

Memory effect

“gap”

Aneurysm

Nominal diameter

Maximum diameter

5.0 mm

3.0 mm

5.0

5.25

TZ

3.0

3.0 mm

5 x 20 mm PED

Nominal diameter
Addressing mismatch

3.0 mm PED

5.0 mm PED

3.0 mm ID

5.0 mm ID

TZ
Symptomatic occluded aneurysm
Conclusions:

- Vertebrobasilar fusiform and recurrent large and giant aneurysms remain formidable lesions associated with high morbidity and mortality when left untreated.

- Safer treatments may allow early intervention prior to quality of life permanently affected.

- Treatment with a variable coverage may be an alternative to invasive and extensive open vascular reconstruction and unpredictable impact of FD coverage.

- Progressive thrombosis of the aneurysm is a fine balance of controlling blood coagulation and flow remodeling.

- OCT imaging could be helpful mapping perforators for tailored coverage.
Hope to see you there!!!

www.wlnc.net