*TVT 2015 Chicago, June 5<sup>nd</sup>, 2015* 

# Cerebral protection devices are still meaningful and necessary

## Eberhard Grube MD, FACC, FSCAI

University Hospital, Dept of Medicine II, Bonn, Germany Stanford University, Palo Alto, California, USA





ARDIOVASCULAR ESEARCH FOUNDATION the heart of innovation

# Disclosure - Eberhard Grube, MD

Physician Name

Eberhard Grube, MD

**Company/Relationship** 

Medtronic, CoreValve: C, SB, AB, OF Direct Flow: C, SB, AB Mitralign: AB, SB, E Boston Scientific: C, SB, AB Biosensors: E, SB, C, AB Cordis: AB Abbott Vascular: AB InSeal Medical: AB, E, Valtech: E, SB, Claret: SB Keystone: AB Shockwave: E, AB



A Multidisciplinary Heart Team Approach



## Stroke incidence and mortality after TAVI

Meta-analysis of 10,037 published patients

Stroke remains a major TAVI complication...

Table 3. Incidence of stroke.

© TVT CHICAGO

|                                               | Number of<br>publica-<br>tions with<br>available<br>data (n) | Overall<br>number<br>of<br>patients<br>with<br>available<br>data (n) | Number<br>of events<br>(n) | Weighted<br>mean±SD |
|-----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|---------------------|
| Procedural stroke (<24h)                      | 24                                                           | 3041                                                                 | 47                         | 1.5±1.4%            |
| 30-day stroke/TIA                             | 53                                                           | 10037                                                                | 334                        | 3.3±1.8%            |
| 30-day major stroke                           | 42                                                           | 5514                                                                 | 158                        | 2.9±1.8%            |
| 30-day minor stroke/TIA                       | 42                                                           | 5514                                                                 | 53                         | 1.0±1.3%            |
| 30-day overall mortality                      | 52                                                           | 10022                                                                | 812                        | 8.1±3.9%            |
| 30-day mortality in patients suffering stroke | 29                                                           | 4430                                                                 | 41                         | 25.5±21.9%          |
| 30-day mortality in patients without stroke   | 29                                                           | 4430                                                                 | 312                        | 6.9±4.2%            |
| 6-month stroke                                | 9                                                            | 669                                                                  | 29                         | 4.3±1.6%            |
| 12-month stroke                               | 7                                                            | 1507                                                                 | 78                         | 5.2±3.4%            |

# ...which increases 30-day mortality >3 fold



*EuroIntervention* 2012;8:129-138 publish online ahead of print March 2012 Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients





## **TAVI stroke is mostly periprocedural**



#### Timing of Cerebrovascular Events (CVE) in FRANCE-2 Registry (n=3,191)

- CVE most frequently occur day 0-1
- >50% are major strokes
- Median time to major stroke is 1 day

T CHICAGO

#### Idnétché et al. J Am Coll Cardiol Intv 2014; 7(10)

#### Stroke

Timing, Predictive Factors, and Prognostic Value of Cerebrovascular Events in a Large Cohort of Patients Undergoing Transcatheter Aortic Valve Implantation



**Figure 2.** Timing of cerebrovascular events (CVEs) within 30 days after transcatheter aortic valve implantation. TIA indicates transient ischemic attack.

#### Multi-center cohort of 1,061 TAVI patients

- CVE most frequently occur day 0-1
- >50% are major strokes
- >95% of strokes are ischemic

#### Nombela-Franco et al., Circulation 2012;126:3041-53



Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach

## **Procedural stroke risk factors**

- Presence and location of arch atheroma
- Micro-embolization of calcification and thrombus on valve
- Catheter handling and device placement technique
- Secondary maneuvers
- Procedural duration
- Optimal anti-coagulation and anti-aggregation
- Arrhythmia management









## Latest Stroke Data from Studies Presented at EuroPCR 2015



| Study                           | Valve                   | Patients | FU      | NE rate % | Criteria |
|---------------------------------|-------------------------|----------|---------|-----------|----------|
| Corevalve Evolut R CE Mark      | <b>Corevalve Evolut</b> | 60       | 30 days | 0.0%      | Varc 2   |
| Respond CE                      | Boston Lotus            | 250      | 30 days | 3.3%      | Varc 2   |
| Advance 2                       | Corevalve Basic         | 200      | 30 days | 2.1%      | Varc 2   |
| Discover Registry               | Direct Flow             | 250      | 30 days | 2.0%      | N/A      |
| lalien DFM Registry             | Direct Flow             | 136      | 30 days | 0.7%      | N/A      |
| Biovalve                        | Biotronik               | 13       | 30 days | 0.0%      | Varc 2   |
| Portico CE Trial                | Portico                 | 102      | 30 days | 3.9%      | N/A      |
| Sapien 3 CE                     | Sapien 3                | 96       | 30 days | 1.1%      | Varc 2   |
| Sapien 3 CE (Intermediate Risk) | Sapien 3                | 101      | 30 days | 4.0%      | Varc 2   |

TVT CHICAGO Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach



#### Under-reporting remains an issue and is even seen in surgical AVR

Stroke After Aortic Valve Surgery

196 patients aged 65 years or older were evaluated by neurologists for clinical stroke and silent infarct before and after aortic valve replacement.

| In-Hospital Mortality | Clinical Stroke<br>(n = 34) | No Clinical Stroke<br>(n = 162) | <i>P</i> Value |
|-----------------------|-----------------------------|---------------------------------|----------------|
| All NIHSS Scores      | 9%                          | 4%                              | NS             |
| NIHSS Score > 10      | 38%                         | 4%                              | .005           |

Clinical stroke was identified in 17% of patients. The same cohort had a stroke rate of 6.6% reported in the Society for Thoracic Surgery database.

Conclusion: Clinical stroke after AVR occurs more often than previously thought and can be associated with higher risk of in-hospital mortality.

> Messé SR, et al. Circulation. 2014; Epub ahead of print.

ource for Interventional Cardiovascular News and Education

Messé SR, Acker MA, Kasner SE, et al. Circulation. 2014; Epub ahead of print after agric valve surgery; results from a prospective cohort.



A Multidisciplinary Heart Team Approach



6

## **Cardiogenic Emboli Distribution**



- Emboli distribution to cerebral circulation is not in concordance with volumetric flow
  assumptions
- Cardiogenic emboli moves preferentially to right hemisphere

Carr IA et al. Size-dependent predilections of cardiogenic embolic transport, Am J Physiol Heart Circ Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach



## **Diffusion-weighted MRI shows new lesions**

Example of an 82-year-old patient two days after successful TAVR:



**Before TAVR** 



Two days after TAVR

Treating Physician: Philipp Kahlert, MD West German Heart Center Essen University Duisburg-Essen





## DW-MRI imaging shows "silent lesions" in TAVI



New lesions found in vast majority of diffusion-weighted MR images (DW-MRI) of the brain following TAVI





## Stroke redefined: AHA/ASA consensus

#### **AHA/ASA Expert Consensus Document**

#### An Updated Definition of Stroke for the 21st Century A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association

The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists.

Endorsed by the American Association of Neurological Surgeons and Congress of Neurological Surgeons

Ralph L. Sacco, MD, MS, FAHA, FAAN, Co-Chair\*; Scott E. Kasner, MD, MSCE, FAHA, FAAN, Co-Chair\*; Joseph P. Broderick, MD, FAHA; Louis R. Caplan, MD; J.J. (Buddy) Connors, MD; Antonio Culebras, MD, FAHA, FAAN; Mitchell S.V. Elkind, MD, MS, FAHA, FAAN; Mary G. George, MD, MSPH, FAHA?; Allen D. Hamdan, MD; Randall T. Higashida, MD; Brian L. Hoh, MD, FAHA; L. Scott Janis, PhD‡; Carlos S. Kase, MD; Dawn O. Kleindorfer, MD, FAHA; Jin-Moo Lee, MD, PhD; Michael E. Moseley, PhD; Eric D. Peterson, MD, MPH, FAHA; Tanya N. Turan, MD, MS, FAHA; Amy L. Valderrama, PhD, RN†; Harry V. Vinters, MD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular Surgery and Anesthesia, Council on Cardiovascular Radiology and Intervention, Council on Peripheral Vascular Disease, and Council on Nutrition, Physical Activity and Metabolism

Abstract—Despite the global impact and advances in understanding the pathophysiology of cerebrovascular diseases, the term "stroke" is not consistently defined in clinical practice, in clinical research, or in assessments of the public health. The classic definition is mainly clinical and does not account for advances in science and technology. The Stroke Council of the American Heart Association/American Stroke Association convened a writing group to develop an expert consensus document for an updated definition of stroke for the 21st century. Central nervous system infarction is defined as brain, spinal cord, or retinal cell death attributable to ischemia, based on neuropathological, neuroimaging, and/or clinical evidence of permanent injury. Central nervous system infarction occurs over a clinical spectrum: Ischemie stroke specifically refers to central nervous system infarction accompanied by overt symptoms, while silent infarction by definition causes no known symptoms. Stroke also broadly includes intracerebral hemorrhage and subarachnoid hemorrhage. The updated definition of stroke incorporates clinical and tissue criteria and can be incorporated into practice, research, and assessments of the public health. (Stroke. 2013;44:00-00.)

- Silent brain infarcts increase the risk of clinical infarction by 2 to 4 times in population-based studies.
- Silent infarcts are well recognized to be associated with several adverse neurological and cognitive consequences:
  - Impaired mobility
  - Physical decline
  - Depression
  - Cognitive dysfunction
  - Dementia
  - Parkinson's disease
  - Alzheimer disease

An Updated Definition of Stroke for the 21st Century : A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association, *Stroke*. published online May 7, 2013

TVT CHICAGO Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach



# Cerebral protection reduces periprocedural strokes during carotid angioplasty & stenting

| Pooled Analysis for Total Stroke Rate Within 30 Days After<br>Protected and Unprotected Carotid Stenting in 134 Studies* |                                                  |                                      |                       |                                       |                         |                                             |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------|-----------------------|---------------------------------------|-------------------------|---------------------------------------------|
|                                                                                                                          | With Protection (n=82) Without Protection (n=76) |                                      |                       |                                       |                         |                                             |
| -                                                                                                                        | Procedures                                       | Total Strokes                        | Procedures            | Total Strokes                         | RR                      | CI                                          |
| All patients<br>Symptomatic<br>Asymptomatic                                                                              | 12,263<br>2427<br>2460                           | 324 (2.6%)<br>91 (3.8%)<br>41 (1.7%) | 11198<br>3149<br>2032 | 474 (4.2%)<br>176 (5.6%)<br>56 (2.8%) | 0.62†<br>0.67†<br>0.61† | 0.54 to 0.72<br>0.52 to 0.86<br>0.41 to 0.9 |

RR: relative risk, CI: confidence interval.

\* 24 studies included data on both protected and unprotected CAS. Of all studies, only 67 studies reported outcomes on symptomatic patients (34 with protected and 39 with unprotected stenting), while 56 reported outcomes on asymptomatic patients (28 with protected and 30 with unprotected stenting). † P<0.05.

## Why should this be different in TAVR?

Garg et al: J Endovasc Ther. 2009;16:412-427





### **Embolic Protection Devices**

| Claret Sentinel™<br>Cerebral Protection System | Edwards Embrella™<br>Embolic Deflector | TriGuard™ Cerebral<br>Protection Device |
|------------------------------------------------|----------------------------------------|-----------------------------------------|
| Filter capture                                 | Deflector                              | Deflector                               |
| 6F (radial)                                    | 6F (radial)                            | 9F (femoral)                            |
| 140 micron pore size                           | 100 micron pore size                   | 130 x 250 micron pore size              |
| Brachiocephalic and LCC                        | Aortic arch position                   | Aortic arch position                    |
| CE marked and commercialized                   | CE marked                              | CE marked                               |



TVT CHICAGO Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach





CAUTION: Investigational device. Limited to investigational



#### **Examples of debris captured with Claret CPS**



TVT CHICAGO Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach



Institute Dante Pazzanese de Cardiologia São Paulo, Brazil TCT Live Case 2013

University of Virginia Charlottesville, VA, USA SENTINEL trial 2015

CAUTION: Investigational device. Limited to investigational use by United States law.



CARDIOVASCULAR RESEARCH FOUNDATIO At the heart of innovation

#### **Embolic debris captured by valve type** during TAVI procedures at AK St Georg (Hamburg)

52 cases of TAVI using Claret Medical Cerebral Protection System performed at AK St Georg (Hamburg)

| Sapien/XT | S3       | CoreValve | Jena   | Portico | Centera |
|-----------|----------|-----------|--------|---------|---------|
| 27 (52%)  | 11 (21%) | 9 (17%)   | 2 (4%) | 2 (4%)  | 1 (2%)  |

Filter contents subsequently analyzed by CVPath Institute





Note: percentages reflect percent of patients in each group in which each particular tissue type was captured. Some filters captured several types of debris, so percentages will not add to 100%

stitute data on file at Claret Medical VT CHICAGO

Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach



IROMBUS

THROMBUS

WITH CALCIFIED DEBRIS

#### CLEAN-TAVI: First RCT of Cerebral Protection in TAVI

100 higher-risk patients with aortic stenosis undergoing TAVR with CoreValve were randomized 1:1 to TAVR with the Claret Montage<sup>™</sup> Cerebral Protection System filters or TAVR without filters.

MRI, neurological and neurocognitive assessments were compared with baseline and between groups.



TVT CHICAGO Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach CAUTION: Investigational device. Limited to investigational use by United Sta



# CLEAN-TAVI shows the problem and the promise

#### **The Problem**



Representative slices from each of the orthogonal planes showing new lesions from **control group** (unprotected, no filters) of CLEAN-TAVI randomized trial

> Transcatheter Valve Therapies (TVT) <u>A Multidisciplinary Heart Team</u> Approach

TVT CHICAGO

#### **The Promise**

Claret Montage Cerebral Protection System significantly reduces new cerebral lesion number and volume at 2 & 7 days, as measured by DW-MRI, and reduces ataxia at 2d



| Per Protocol             |             | at 2 days No. (%) |  |
|--------------------------|-------------|-------------------|--|
| <b>Control</b><br>(n=50) | any symptom | 14 (28%)          |  |
|                          | - ataxia    | 12 (24%)          |  |
| Filter<br>(n=45)         | any symptom | 6 (13%)           |  |
|                          | - ataxia    | 4 (9%)            |  |

RR 1.559 (1.083 to 2.244), OR 3.2, p<0.05



### **CLEAN-TAVI** shows the promise of protection

#### The Problem

Control group (no filters)



#### The Promise

Test group (filters)



Representative slices from each of the orthogonal planes showing new lesions at 2d from each arm of CLEAN-TAVI randomized trial of cerebral embolic protection in TAVI using Claret dual-filter Cerebral Protection Systems

Claret Montage Cerebral Protection System significantly reduces new cerebral lesion number and volume at 2 & 7 days, as measured by DW-MRI

1. CLEAN-TAVI (manuscript in review)

CAUTION: Investigational device. Limited to investigational use by United States law.



Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach



CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation

## **SENTINEL Study Design**

# WENROLLING Pivotal study confirming the therapeutic importance of embolic debris capture and removal during TAVR

**Objective:** Assess the safety and efficacy of the Claret Medical Sentinel Cerebral Protection System in reducing the volume and number of new ischemic lesions in the brain and their potential impact on neurocognitive function



Primary Efficacy Endpoint: Reduction in median total new lesion volume as assessed by DW-MRI.

Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach

Primary Safety Endpoint: Occurrence of all MAE at 30 days.

**©**TVT CHICAGO

CAUTION: Investigational device. Limited to investigational use by United S



# **SENTINEL MRI methodology**

- 3-Tesla MR scanner standardization for optimal resolution across all study sites
  - 3.0T is able to resolve smaller lesions, allows shorter acquisition times, and has a higher signal-to-noise ratio than 1.5T MR scanners
- Diffusion-weighted (DW) and fluid-attenuated inversion recovery (FLAIR) MR sequences
  - To assess both acute (DW) and chronic (FLAIR) lesions
- Novel methodology with serial scan acquisition
  - Baseline mapping must be performed to eliminate over-estimation of existing lesions.
  - Serial co-registration must be performed based on the baseline, otherwise the analysis is not reliable
- Core lab analysis of all scans
  - Buffalo Neuroimaging Analysis Center, Buffalo, NY

## **Composite images of CLEAN-TAVI MRIs**



#### Blinded analysis of first 78 patients



Transcatheter Valve Therapies (TVT) <u>A Multidisciplinary Heart</u> Team Approach CAUTION: Investigational device. Limited to investigration



#### **DEFLECT III: Pilot RCT using TriGuard deflection device**



Final 30-day results of the DEFLECT III trial: a prospective randomised evaluation of the novel embolic protection DEFLECTion device during TAVI



J Schofer, D Tchet T Cuisset, D Black

to investigational use by United States law.



DW-MRI: ITT = 23 (59%); PT = 23 (59%)

TVT CHICAGO Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach

DW-MRI: ITT=27 (59%); PT=23 (50%)

## **DEFLECT III: DW-MRI Results**



• Trend to lower lesion burden





CAUTION: Investigational device. Limited to investigational use by United States law.



© TVT CHICAGO Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach

# Trend towards improved neurological and neurocognitive outcomes



Transcatheter Valve Therapies (TVT) <u>A Multidisciplinary</u> Heart Team Approach

© TVT CHICAGO

- Blunt instruments (NIHSS and MoCA) show trends towards improved neurological and neurocognitive outcomes with protection
- Larger trials and more comprehensive neurocognitive batteries (e.g. RECON) will further elucidate benefit



RDIOVASCULAR SEARCH FOUNDATION the heart of innovation

## Conclusions

- Stroke remains a devastating complication of TAVR, even with new devices
- Clinical stroke is often under-diagnosed
- Periprocedural subclinical cerebral infarcts are common and increase future risk of events
- Cerebral protection devices show promise in reducing cerebral ischemic burden and improving outcomes for TAVI patients
- Large multicenter randomized trials with detailed MR imaging and neurocognitive assessments will further elucidate potential

