Stroke, bleeding and risk scores in atrial fibrillation

Stefan Bertog, Laura Vaskelyte,
Markus Reinartz, Ilona Hofmann,
Sameer Gafoor, Horst Sievert
CardioVascular Center
Frankfurt

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

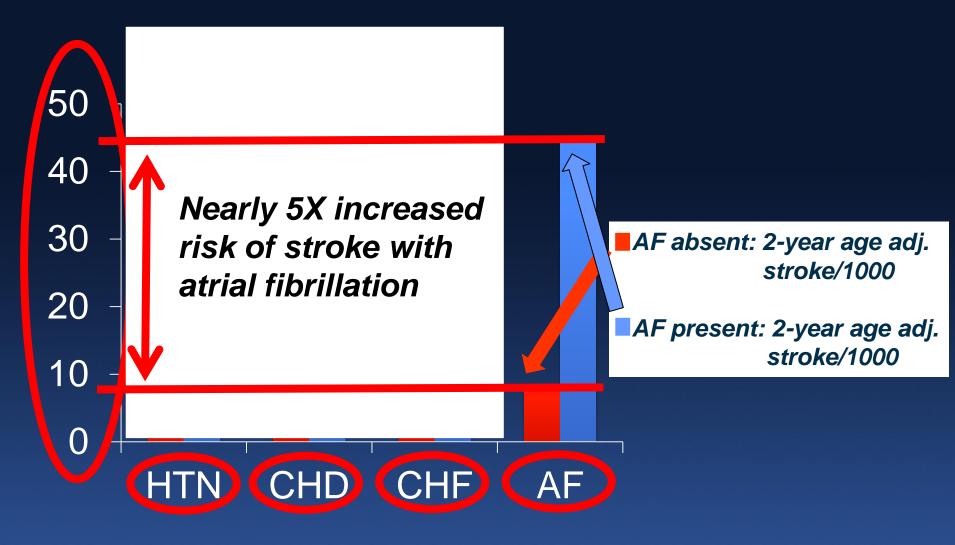
- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

CardioRenal LLC

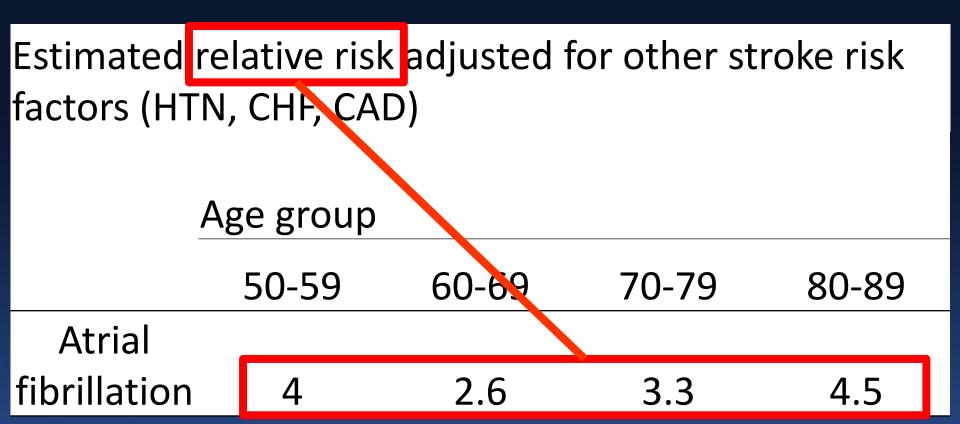
Does atrial fibrillation "cause" strokes?

- Is atrial fibrillation associated with an increased stroke risk?
- Is the increased stroke risk in atrial fibrillation the result of LAA thrombi?



- Framingham Study
 - ~5K healthy individuals enrolled in 1948
 - Followed biennially
 - Cardiovascular events recorded

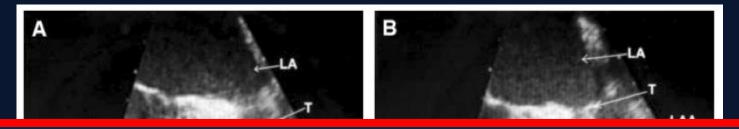
Wolf et al. Stroke 1991;22:983-988



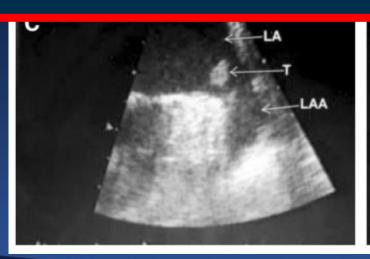
Well, this could just be a reflection of the patients' ages and co-morbidities....

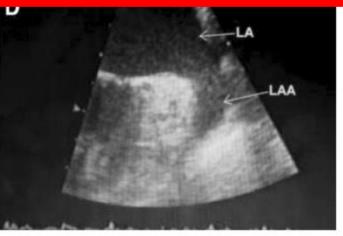
Wolf et al. Stroke 1991;22:983-988

- ...OK, atrial fibrillation is associated with an increased stroke risk
- ...It appears to be an independent risk factor for stroke



- Is this risk relationship due to thrombi in the LAA?
 - Anatomical and physiological plausibility
 - Echocardiography and pathological specimens





Disappearing thrombus resulting in stroke

LAA thrombus causes strokes!

Thrombus location

Type of examination No. of pts appendage LA cavity
TEE 317 66 1

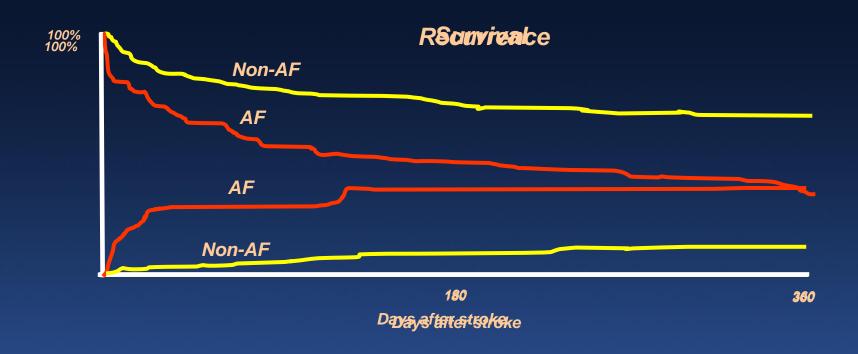
90% of thrombi in non-valvular atrial fibrillation are in the LAA

1288

201

TEE and surgery	171	8	3
SPAF III TEE	359	19	1
TEE	272	19	0
TEE	60	6	0

Blackshear and Odell.Ann Thorac Surg 1996;61:755-9



Total

21

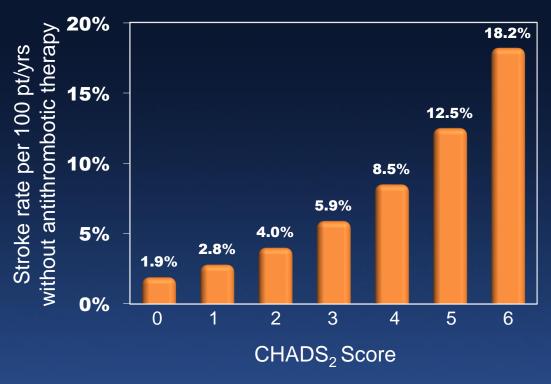
Stroke size and recurrence in atrial fibrillation

Lin et al. Stroke 1996;27(10:1760-4

- Atrial fibrillation is an independent risk factor for strokes
- Thrombi are located overwhelmingly in the LAA
- Strokes attributed to atrial fibrillation are typically larger than strokes of other etiology

Stroke risk

- What is the stroke risk without anticoagulation?
- What is the stroke risk with anticoagulation?


CHADS₂

- CHADS₂, developed and validated by Gage et al, is a system for establishing the risk of stroke in patients with non-rheumatic atrial fibrillation¹
 - Patients are awarded points based on comorbidities

	Condition	Points
С	Congestive heart failure	1
Н	Hypertension	1
Α	Age ≥75 years	1
D	Diabetes mellitus	1
S ₂	Previous stroke or TIA	2

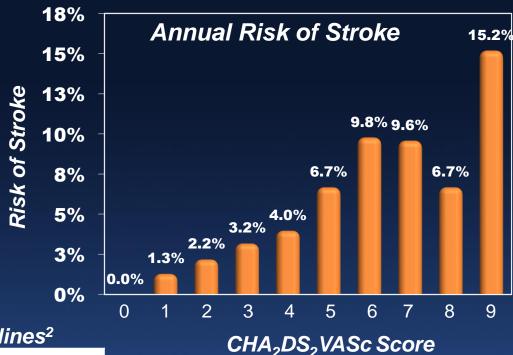
European Society of Cardiology Guidelines²

CHADS ₂ score	Treatment
0	Aspirin
1	Aspirin or warfarin*
≥2	Warfarin

- 1. Gage BF et al, *JAMA* 2001;285:2864–2870
- 2. Camm AJ et al, Eur Heart J 2010;31, 2369-2429

CHADS₂

- Problem:
 - It does not perform well in patients with low scores (0-1)
 - There are other risk factors that determine stroke risk not accounted for



CHA₂DS₂VASc

CHA₂DS₂VASc, developed by Lip et al, is a refinement of the older CHADS₂
 Score which includes additional stroke risk factors and puts greater emphasis on age as a risk factor¹

	Condition/Risk Factor	Points
С	Congestive heart failure	1
Н	Hypertension	1
A ₂	Age ≥75 years	2
D	Diabetes Mellitus	1
S ₂	Previous stroke or TIA	2
٧	Vascular disease	1
Α	Age 65-74 years	1
Sc	Sex (female gender)	1

European Society of Cardiology Guidelines²

CHA ₂ DS ₂ -VASc Score	Treatment
0	Aspirin
1	Aspirin or warfarin or dabigatran
≥2	Warfarin or dabigatran

- 1. Lip GY et al, Chest 2010;137(2):263-72
- 2. Camm AJ et al, Eur Heart J 2010;31, 2369-2429

Added value of CHADSvasc

- Danish registry of "low risks" patients (CHADS-2 score 0-1) with atrial fibrillation not treated with anticoagulation
- ~47K patients included

Added value of CHADSvasc

Annual stroke risk

CHADS 0	1.28%
CHADSvasc 0	0.76%
CHADSvasc 1	1.44%
CHADSvasc 2	2.11%
CHADSvasc 3	2.10%
CHADS 1	3.61%
CHADSvasc 1	1.46%
CHADSvasc 2	3.26%
CHADSvasc 3	4.28%

CHADSvasc 4

Olesen et al. Thromb Heamost 2012;107:1172-1179

4.93%

Step 1

Age, y	Points
55-59	0
60-62	1
63-66	2
67-71	3
72-74	4
75-77	5
78-81	6
82-85	7
86-90	8
91-93	9
>93	10

Step 2

Sex	Points
Men	0
Women	6

Step 3

Systolic Blood Pressure, mm Hg	Points
<120	0
120-139	1
140-159	2
160-179	3
>179	4

Step 4

Diabetes	Points
No	0
Yes	5

Step 5

Prior Stroke or TIA	Points
No	0
Yes	6

Step 6

Add Up Points From Steps 1 Through 5

Look Up Predicted 5-Year Risk of St. ke in Table

Predicted 5-year Risk of Stroke

Total Points	5- Year Risk, %
0-1	5
2-3	6
4	7
5	8
6-7	9
8	11
9	12
10	13
11	14
12	16
13	18
14	19
15	21
16	24
17	26
18	28
19	31
20	34
21	37
22	41
23	44
24	48
25	51
26	55
27	59
28	63
29	67
30	71
31	75

	No. at Risk	KM Rate at 2 Years
CHADS		
0	2753	1.0
1	4191	2.5
2	3579	4.7
3	1957	7.3
4	733	8.8
5	288	11.0
6	58	16.0
R2CHADS2		
0	2414	0.8
1	3038	2.2
2	2425	4.0
3	2070	4.2
4	1807	6.0
5	1171	9.2
6	445	9.3
7	157	11.6
8	32	11.4

+2 for CrCl of <60

Other prediction models

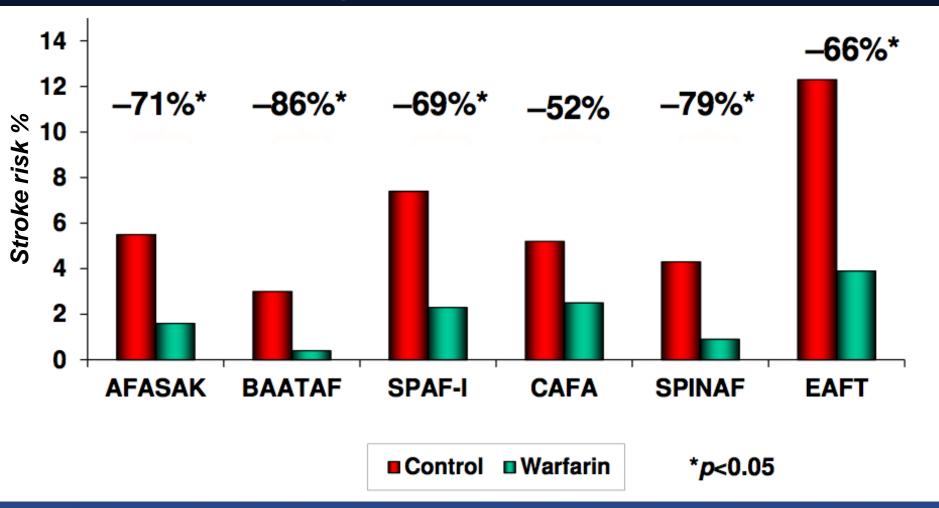
- SPAF
- AFI
- Community-based risk model based on Framingham
- R2CHADS2
- ATRIA

Risk Factor	Points Without Prior Stroke	Points With Prior Stroke	Points	Rate per 100 Person-Years	
Age, y			0	0.08	
≥85	6	9	1	0.43	
75 to 84	5	7	2	0.99	
65 to 74	3	7			
<65	0	8	3	0.73	
Female	1	1	4	0.64	
Diabetes	1	1	5	0.99	
CHF	1	1	6	1.91	
Hypertension	1	1	7	2.50	
Proteinuria	1	1			
eGFR<45 or ESRD	1	1	8	3.86	
			9	4.33	
			10	6.35	
			11	6.18	
			12	10.95	
			13	7.52	
Singer et al. J Am Heart Assoc. 2013:21;2(3) CTCC2014		14	16.36		
9 LCL 2014			15	0	CULA:

How about LAA morphology?

- Retrospective study
- 932 pts
- Scheduled for Afib ablation
 - 48% chicken wing
 - 30% Cactus
 - 19% Windsock
 - 3% Cauliflower

OR 0.21 CI: 0.05-0.91


Stroke risk

- What is the stroke risk without anticoagulation?
- What is the stroke risk with anticoagulation?

Efficacy of warfarin in afib

Hart et al. Ann Intern Med 1999;131:492-501

Bleeding risk

• How about bleeding risk?

Warfarin and bleeding

- Meta-analysis (AFASAK 1, EAFT, PATAF, SPAF 2, AFASAK 2, SPAF 3):
 - Annual major bleeding: 2.2%
 - 15% of all major bleeding was lethal
 - Major bleeding was significantly higher than in control groups

Van Walraven et al. JAMA 2002;288(19):2441-48

Warfarin and bleeding

- Intracranial hemorrhage?
 - Cohort study ~11K patients with atrial fibrillation
 - Annual intracranial hemorrhage (0.46% versus 0.23%, OR: 1.94, CI: 1.25-3.03)
 - Metanalysis (AFASAK, SPAF, BAATAF, CAFA, SPINAF, EAFT):
 - Annual intracranial hemorrhage (0.3% on warfarin versus 0.1% in the placebo group)

Go et al. JAMA 2003;290(20): 2685-2692) Hart et al. Ann Intern Med 1999;131:492-501

LAA closure

 Warfarin is associated with a significant bleeding risk including intracranial hemorrhage

Quantifying bleeding risk

HAS-BLED risk score:

	Points
HTN	1
Renal failure	1
Liver dysfunction	1
Stroke	1
Bleeding	
tendency	1
Labile INRs	1
Age >65	1
Drugs (ASA,	
NSAIDS)	1
ЕТОН	1
	Max 9

HAS-BLED score Bleeds/100 pt-yrs		
(total points)		
0	1.13	
1	1.02	
2	1.88	
3	3.74	
4	8.7	
5 to 9	Insuff. data	

Pisters et al. Chest. 2010; 138:1093-100

Quantifying bleeding risk

HEMORRH2HAGES risk index:

HEMORR₂HAGES

Letter	Clinical Characteristic	Points
Н	Hepatic or Renal Disease	1
E	Ethanol Abuse	1
М	Malignancy	1
0	Older Age	1
R	Reduced Platelet Count or Function	1
R	Rebleeding Risk	2
н	Hypertension	1
Α	Anemia	1
G	Genetic Factors	1
E	Excessive Fall Risk	1
S	Stroke	1
Maximum Score		12

0-1: low

2-3: intermediate

>3: high

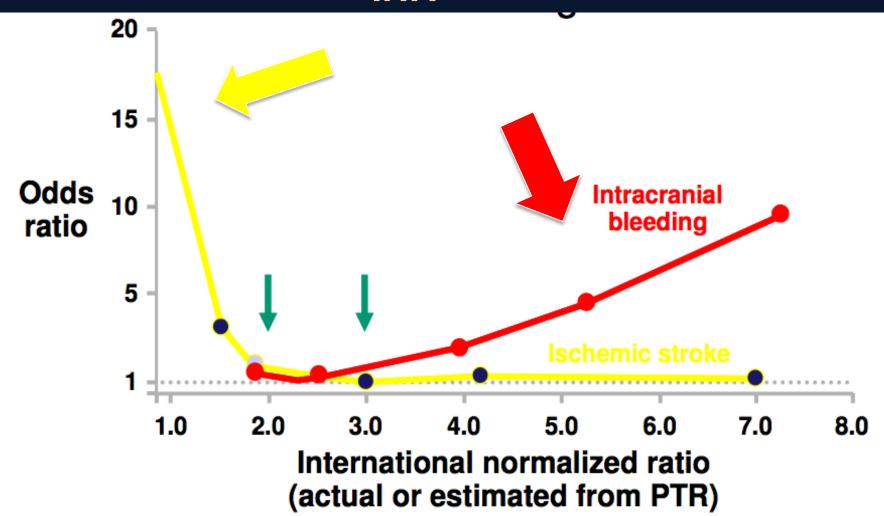
Gage et al. Am Heart J. 2006; 151:713-719

Quantifying bleeding risk

ATRIA risk score:

ATRIA		
Clinical Characteristic	Points	
Anemia	3	
Severe Renal Disease	3	
Age ≥75 Years	2	
Prior Bleeding	1	
Hypertension	1	
Maximum Score	10	

0-3: low (0.8%)
4: intermediate (2.6%)


>4: high (5.8%)

Fang et al. J Am Coll Cardiol. 2011; 58:395-401

Stroke and bleeding risk depending on INR

Hylek EM and Singer DE: Ann Intern Med 120:897, 1994

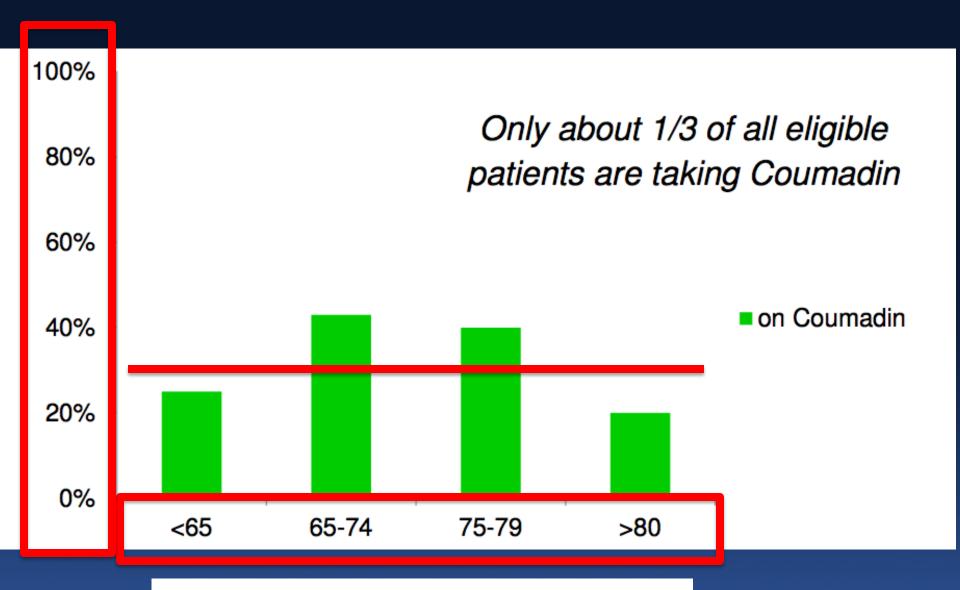
Hylek EM et al: N Engl J Med 335:540, 1996

Warfarin and bleeding

 Importantly, risk factors of stroke also are risk factors for hemorrhage

HAS-BLED

CHADS2VASC


	Condition/Risk Factor	
С	Congestive heart failure	e 1
Н	Hypertension	1
A ₂	Age ≥75 years	2
D	Diabetes Mellitus	1
S ₂	Previous stroke or TIA	2
V	Vascular disease 1	
Α	Age 65-74 years	1
Sc	Sex (female gender)	1

Renal failure

5tCt2014

	Points
HTN	1
Renal failure	1
Liver dysfunctior	1
Stroke	1
Bleeding	
tendency	1
Labile INRs	1
Age >65	1
Drugs (ASA,	
NSAIDS)	1
ЕТОН	1
	Max 9

AR

Stafford and Singer, Arch Int Med, 1996

Stroke risk reduction

Novel anticoagulants and stroke risk reduction

How about: stroke risk reduction: newer anticoagulants vs. warfarin

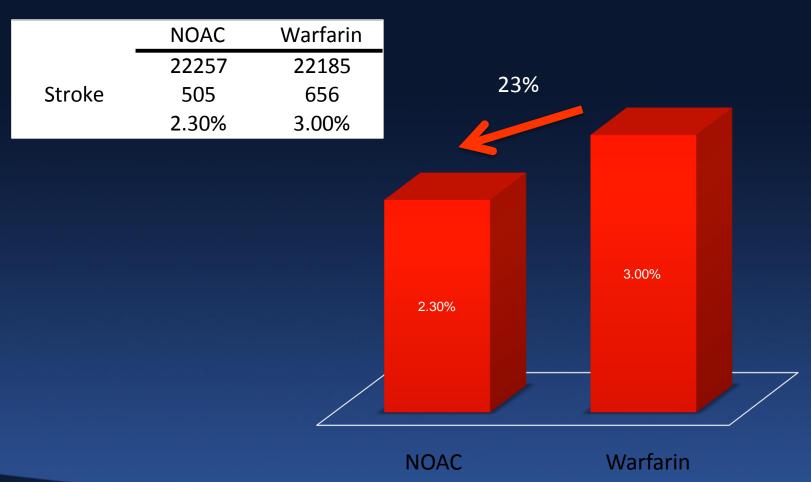
Dabigatran

- At 150 mg bid: lower stroke rate
- At 110 mg bid: equivalent stroke rate

Rivaroxaban

- Equivalent stroke rate
 - 1.7% versus 2.2% (stroke or systemic embolism)

Apixaban


- Lower stroke rate (driven by hemorrhagic strokes)
 - 1.2% versus 1.5% annually (p=0.01)

Stroke alone (all cause)

P<0.0001

Risk of major hemorrhage: Newer anticoagulants vs. warfarin

• Rivaroxaban:

- No difference in major bleeding (3.6% versus 3.4% annually)
- Lower rate of intracranial hemorrhage with rivaroxaban (0.8% versus 1.2%, p=0.02)

Risk of major hemorrhage Newer anticoagulants vs. warfarin

Dabigatran:

- At 150 mg bid: no difference in major bleeding (3.32% versus 3.57% annually)however, higher major hemorrhage with dabigatran in pts >75 yrs
- At 110 mg bid: lower rate of major bleeding (2.87% versus 3.57%, p=0.003)
- Overall lower rate of intracranial hemorrhage (0.10% [0.12%] versus 0.38%, p<0.001)

Risk of major hemorrhage Newer anticoagulants vs. warfarin

Apixaban:

- Less major bleeding (2.1% vs. 3.1% annually)
- Lower rate of intracranial hemorrhage (0.33% versus 0.80%)

Conclusions

- Atrial fibrillation is associated with a substantial stroke risk
- The risk is largely related to LAA thrombi
- Anticoagulation reduces the stroke risk substantially
- Anticoagulation also increases the major bleeding risk substantially
- Due to the risks of anticoagulants only a minority eligible for anticoagulation are actually taking it
- NOACs are also associated with a significant bleeding risk
- Alternatives that reduce stroke risk while avoiding major bleeding are desirable

