Atrial Fibrillation: Stratifying Stroke Risk and Determining Anticoagulant Therapy

Asma Hussaini, MS, PA-C Cedars Sinai Heart Institute Los Angeles, CA

CEDARS-SINAI MEDICAL CENTER.

Disclosure Statement of Financial Interest

I, Asma Hussaini DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Atrial Fibrillation and Stroke

- AF is a very common, often asymptomatic condition that can present for the first time as a devastating stroke.
- Stroke rate with atrial fibrillation (AF) varies between 1% and 20% annually (mean 4.5% per year) depending on comorbidities and history of prior cerebrovascular events.¹
- Stratification of stroke risk important, as the major risk of anticoagulation therapy is bleeding.

1.Arch Intern Med. 1994;154:1449–1457

LAA is the source of thrombus in over 90% of AF patients

Blackshear JL, Odell JA, Ann of Thor Surgery, 1996;61:755-759

CHADS₂ Score

Item	Points	_	CHADS ₂	Stroke rate (95% CI)*
Congestive heart failure	1		6	18.2 (10.5–27.4)
Hyportonsion	1		5	12.5 (8.2–17.5)
Hypertension		Add points	4	8.5 (6.3–11.1)
Age ≥75 years	1	together	3	5.9 (4.6–7.3)
Diabetes mellitus	1		2	4.0 (3.1–5.1)
			1	2.8 (2.0–3.8)
Stroke/TIA	2		0	1.9 (1.2–3.0)

*Per 100 patient-years without antithrombotic therapy

Gage et al, JAMA 2001

CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation

ACC/AHA/HRS 2012 guidelines: based on CHADS₂ Score

Recommended therapy		
ACC/AHA/HRS 2012		
ASA 81–325 mg/day		
M/Γ (MD 2 2) or ACA 81 225 mg/day		
WF (INR 2–3) or ASA 81–325 mg/day		
WF (INR 2–3)		

Furie et et al. Stroke. Aug. 2012; 43: 3442-3453

CHADS₂-VASc: a further refinement of CHADS₂

Risk factor	Points
Congestive heart failure/LV dysfunction*	+1
Hypertension	+1
Age ≥75 years	+2
Diabetes mellitus	+1
Previous stroke/TIA/thromboembolism	+2
Vascular disease (MI, aortic plaque, peripheral	+1
artery disease)	
Age 65–74 years	+1
Sex category (female)	+1
Maximum score	9

*Left ventricular ejection fraction ≤40%; #Including prior revascularization, amputation due to peripheral artery disease or angiographic evidence of peripheral artery disease

Camm et al, Eur Heart J 2010; Lip et al, Chest 2010

Many stroke risk factors are also risk factors for bleeding

	Risk factor for stroke*	Risk factor for anticoagulant-related bleeding*
Advanced age ^{1–4}	✓	\checkmark
History of hypertension ^{1,3,4}	\checkmark	\checkmark
History of MI or ischemic heart disease ^{1,3}	✓	\checkmark
Cerebrovascular disease ¹⁻⁴	\checkmark	\checkmark
Anemia ^{3,4}		\checkmark
Previous history of bleeding ^{3,4}		\checkmark
Kidney or liver dysfunction ⁴		\checkmark
Concomitant use of antiplatelets ^{3,4}		✓ *Not exhaustiv

The relationship between stroke risk and bleeding risk complicates the evaluation of benefit-risk

1. Lip et al, Chest 2010; 2. Hylek et al, Ann Intern Med 1994; 3. Hughes et al, QJM 2007;

HAS-BLED score

Clinical characteristic	Points
Hypertension (SBP >160 mm Hg)	1
Abnormal renal or liver function	1 + 1
Stroke	1
Bleeding	1
Labile INRs	1
Elderly (age >65 years)	1
Drugs or alcohol	1 + 1
Cumulative score	Range 0–9

Pisters et al, Chest 2010

1-year risk of major bleeding increases with HAS-BLED score

Score	No	No of Bleed	Bleeds Per 100 Patient-Years
0	798	9	1.13
1	1286	13	1.02
2	744	14	1.88
3	187	7	3.74
4	46	4	8.70
5	8	1	12.50
6	2	0	0.0
7	0		
8	0		
9	0		

Pisters et al, Chest 2010

CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation

HAS-BLED score

- Should not be used to exclude patients from OAC therapy.
- Allows clinician to identify bleeding risk factors and to correct those that are modifiable, ie, controlling blood pressure, and reducing alcohol.
- Can be used to highlight those patients on OACs in whom caution and regular review is warranted.

Vitamin K Antagonists(Warfarin)

- Multiple trials demonstrate superiority of vitamin K antagonists over antiplatelet therapies for stroke prevention in AF patients.
- Data shows consistent benefit of warfarin across studies with absolute reduction in annual stroke rate from 4.5% for control patients to 1.4% in patients assigned to adjusted-dose warfarin.¹
- This absolute risk reduction translates to 31 ischemic strokes prevented each year for every 1000 patients treated.

Arch Intern Med. 1994;154:1449-1457

Vitamin K Antagonists

- Warfarin is relatively safe, annual rate of major bleeding of 1.3% compared with 1% for placebo or aspirin.¹
- No data to support that increasing intensity of anticoagulation or adding antiplatelet agent provides additional protection against second event for patients who have a stroke while on therapeutic anticoagulation.

Hylek et al. N Engl J Med 1996:335:540-546

Antiplatelet Therapy

 For high-risk patients with AF deemed unsuitable for anticoagulation, dualantiplatelet therapy with Clopidogrel and aspirin offers more protection against stroke than aspirin alone but with an increased risk of major bleeding.

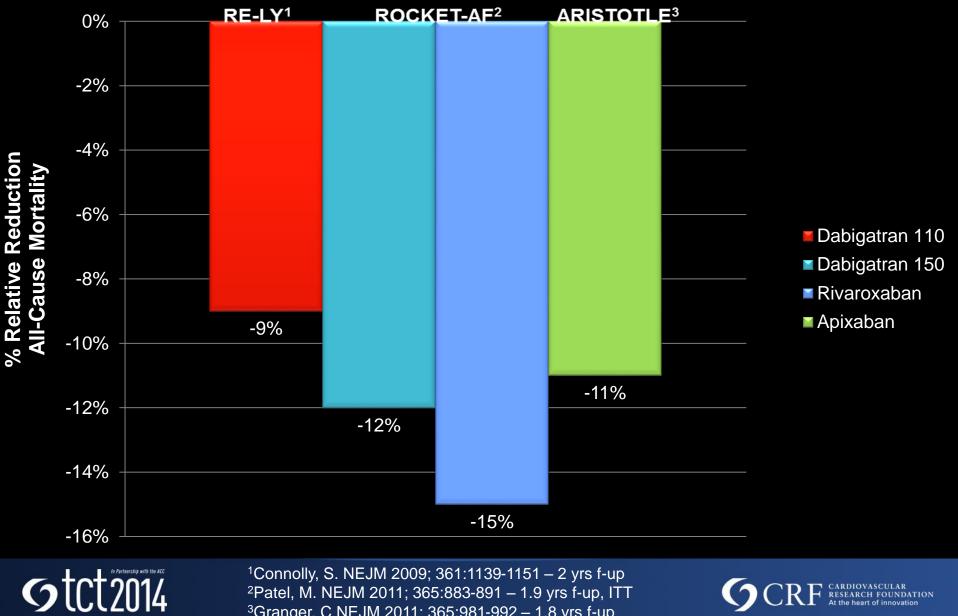
Furie et et al. Stroke. Aug. 2012; 43: 3442-3453

New Oral Anticoagulants (NOACs)

- No published data comparing Dabigatran, Rivaroxaban, and Apixaban to one another, only comparisons to warfarin.
- The duration of follow-up in the clinical trials was limited.
- Due to their short half-lives, noncompliant patients may be at risk for thromboembolism.

New Oral Anticoagulants (NOACs)

- Treatment decisions should account for differences in costs, which may affect compliance.
- Drug activity presently cannot be assessed in routine clinical practice, this can lead to risk of undertreating or overtreating.
- There are no antidotes to emergently reverse these medications in the setting of hemorrhage.



Comparison of Key Studies of NOACs

	RE-LY ²⁶	ROCKET-AF ⁵²	ARISTOTLE ⁵⁸
Agent	Dabigatran 150 mg BID	Rivaroxaban 20 mg QD	Apixaban 5 mg or 2.5 mg BID*
Comparator	Warfarin	Warfarin	Warfarin
Blinding	Open label	Double blind	Double blind,
Sample size	18 113	14 264	18 201
Mean age, y	72	73	70
Female, %	36	40	35
CHADS score	2.1	3.5	2.1
0–1, %	32	0	34
2, %	35	13	36
3–6, %	33	87	30
Previous stroke, %	20	34	19
Event rate vs comparator, %†	1.1 vs 1.7 (P<0.001)	2.1 vs 2.4 (P=0.12‡)	1.3 vs 1.6 (P<0.001)
HR vs comparator ⁺	0.66 (0.53–0.82)	0.88 (0.74–1.03)‡	0.79 (0.66–0.95)
No. needed to treat	167	Noninferior	303
Major bleeding vs comparator, %	3.1 vs 3.4	3.6 vs 3.4	2.1 vs 3.1
ICH vs comparator, %	0.3 vs 0.7	0.5 vs 0.7	0.2 vs 0.5
Stct2014 Furie et	t al. Stroke. Aug. 2012	; 43:3442-3453 🧿	CRF CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation

Total Mortality Relative Reduction (vs warfarin)

²Patel, M. NEJM 2011; 365:883-891 – 1.9 yrs f-up, ITT ³Granger, C NEJM 2011; 365:981-992 – 1.8 yrs f-up

Dabigatran

 Dabigatran is useful as an alternative to warfarin for the prevention of stroke in AF patients who do not have a prosthetic heart valve or hemodynamically significant valve disease, severe renal failure (CrCl <15 mL/min), or advanced liver disease (impaired baseline clotting function).

Furie et al. Stroke. Aug. 2012; 43:3442-3453

Apixaban

 Apixaban 5 mg twice daily is a relatively safe and effective alternative to warfarin in patients with nonvalvular AF deemed appropriate for vitamin K antagonist therapy who have at least 1 additional risk factor and no more than 1 of the following characteristics: Age \geq 80 years, weight \leq 60 kg, or serum creatinine $\geq 1.5 \text{ mg/dL}$.

Furie et al. Stroke. Aug. 2012; 43:3442-3453

Rivaroxaban

- Rivaroxaban 20 mg/d is reasonable as an alternative to warfarin.
- Should not be used if CrCl<25 mL/min.
- Also approved for treatment and prophylaxis of DVT/PE

Furie et al. Stroke. Aug. 2012; 43:3442-3453

Conclusions

- Warfarin and the newer anticoagulant agents (Dabigatran, Rivaroxaban, Apixaban) are effective in reduction of ischemic stroke risk in AF patients.
- Clinicians often overestimate the risk of bleeding with OACs, and underestimate risk of stroke in AF.
- Stroke and bleeding risk assessment tools such as CHADS₂ and HAS-BLED can help guide the decision of OAC to use and the management plan.

