Next-Generation Carotid Artery Stents:

Are Mesh/Membrane Stents Game Changers?

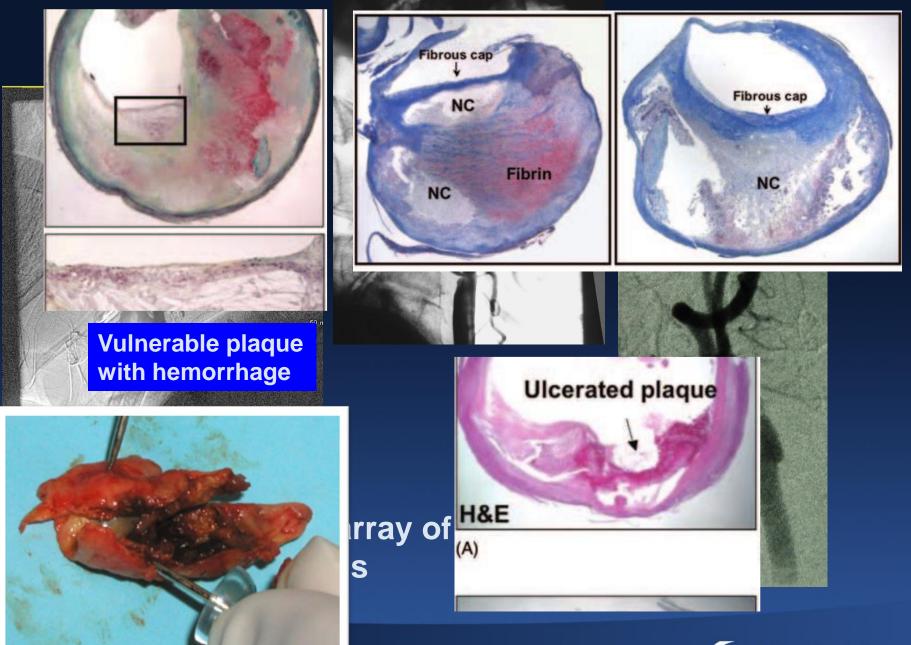
Peter A. Schneider, MD Kaiser Foundation Hospital Honolulu, Hawaii

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Research Study Sponsorship
- Royalty Income (modest)
- Ownership/Founder


Company

- Medtronic, Gore, Cordis (non-compensated)
- Cook Medical
- Intact Vascular

All faculty disclosures are available on the CRF Events App and online at www.crf.org/tct

CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation

Why Do We Need Mesh-covered Stents? Carotid Stent Design

We are asking much of carotid stents.

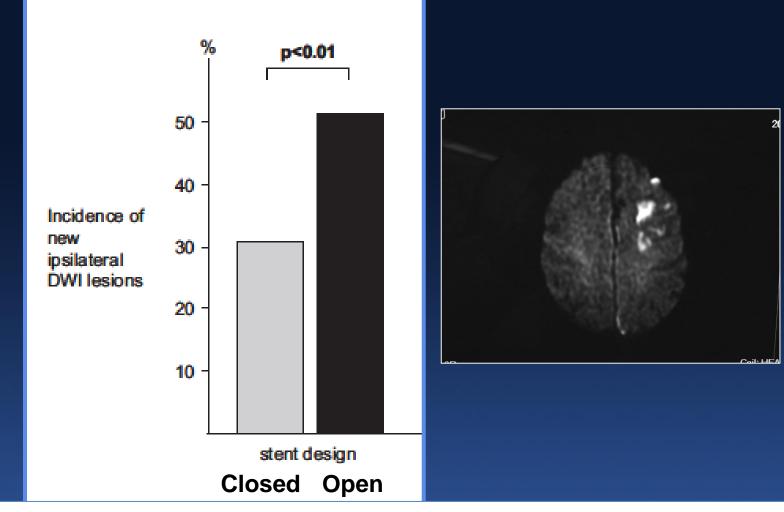
- Scaffolding
- Lesion containment
- Conformability
- Fatigue resistance
- Minimal fish-scaling for ease of re-crossing
- Visibility
- Ease of use
- Low profile

Delayed Neurologic Events 1-30d Especially with Open Cell Stents

	Total population				
	Patients	All events	Post ever	-procedural its	
Open cell	937	39	32	2/3 of neuro	
Closed cell	2242	51	29	events were	
Total	3179	90	61←	delayed (1-30d)	
Cell type					
Open cell		4.2%	3.49	%	
Closed cell		2.3%	1.3°	%	
Total	3179	2.83%	1.90	%	
Fa	ailure o	f the st	tent		

Bosiers et al. Eur J Vasc Endovasc Surg 2007;33:135

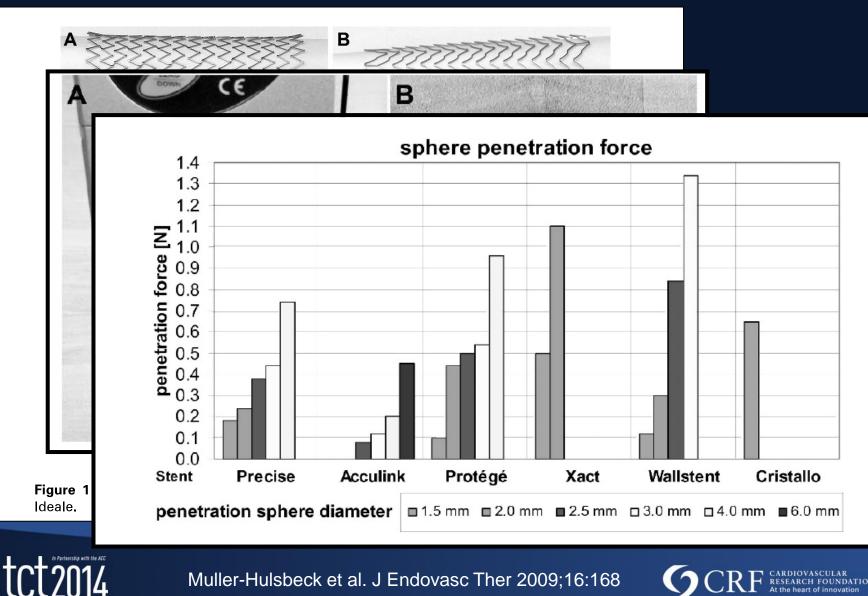
Increased Neurologic Events With Open Cell Stents SPACE Trial


Table 4.	Influence of Different Stent Types on OE Rate				
Stent	Wallstent	Acculink	Precise		
No. of patients	436	92	35		
Pat. with OE	24	9	5		
0E rate (95% Cl)	5.5% (3.6–8.1%) Closed	9.8% (4.6–17.8%)	14.3% (4.8–30.3%) → Open		
	Combined OE rate: 11.0% (6.2–17.8%)				

Olav J et al. Stroke 2009;40:841

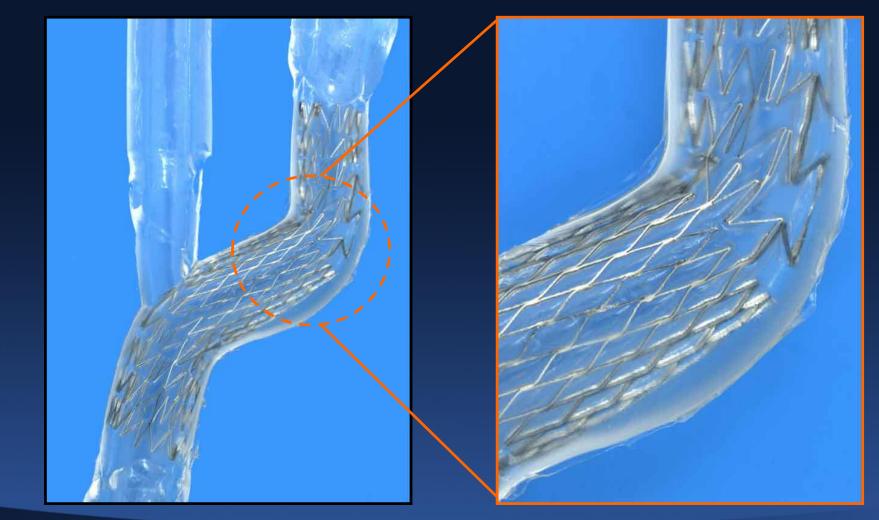
New Brain Lesions After Carotid Stenting Versus Carotid Endarterectomy: A Systematic Review of the Literature

Increased DW-MRI Hits With Open Cell Stents


Schnaudigel et al. Stroke 2008;39:911

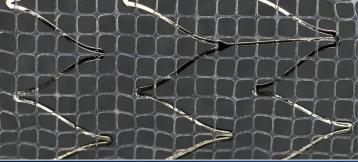
9TCT2014

CARDIOVASCULAR RESEARCH FOUNDATIC At the heart of innovation


Carotid Stent Design

Muller-Hulsbeck et al. J Endovasc Ther 2009;16:168

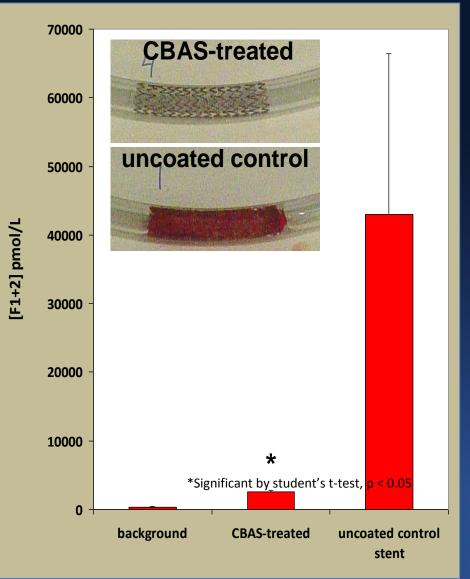
Carotid Stent Design Open Cell In Tortuous Bifurcation



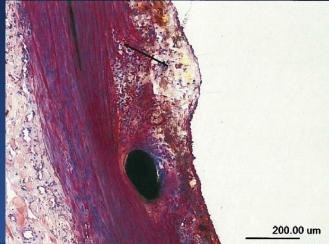
Wholey J Endovasc Ther 2009;16:178

Mesh-Covered Stents GORE Carotid Stent

W.L. Gore Abbott Abbott Abbott Scientific Covidiand Laboratories	
GORE® ACCULINK® XACT® WALLSTENT® PROTÉ Carotid RX DEVICE DEVICE DEVICE DEVICE DEVICE	


CAUTION: Investigational Device. Limited by United States Law to Investigational Use only. Not available in US. Not approved by FDA.

Mesh-Covered Stents CBAS[®]-Heparin Evaluation


- Modified Chandler Loop recirculating blood model
 - CBAS[®]-treated devices thrombus-free after a one hour exposure to human blood,
 - Untreated control device contained adherent thrombus.
- Coagulation biomarker prothrombin fragment 1 and 2 (F1+2) revealed significantly lower levels associated with CBAS[®]-treated GCS compared to uncoated control devices

Mesh-Covered Stents GORE Carotid Stent Preclinical Studies

- Canine artery model
- Biologically acceptable tissue response
 - All sidebranches and devices patent through 56 days
 - Full device
 endothelialization at
 30 days
 - Comparatively less medial compression

GORE[®] Stent

Carotid WALLSTENT ™

CARDIOVASCULAR RESEARCH FOUNDATION At the heart of innovation

Mesh-Covered Stents SCAFFOLD Trial

Design-Prospective study comparing the GORE® Carotid Stent to a performance goal developed from carotid endarterectomy outcomes

50 sites, 312 subjects.

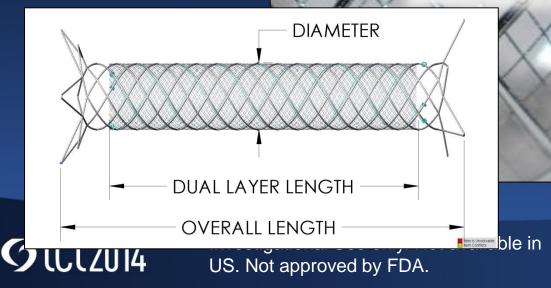
Co-PIs-Bill Gray and Peter Schneider

Objective-Evaluate safety and efficacy of GORE[®] Carotid Stent in patients at increased risk for adverse events from carotid endarterectomy.

Primary endpoint-Death, stroke, or myocardial infarction through 30 days plus ipsilateral stroke between 31 days and 1 year.

CAUTION: Investigational Device.

Limited by United States Law to Investigational Use only. Not available in US. Not approved by FDA.

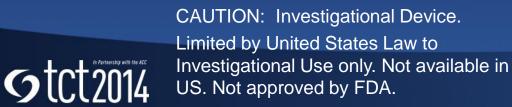

Mesh-Covered Stents SCAFFOLD Trial

Mesh-Covered Stents

Casper

Mesh coverage for sustained embolic prevention Retrievable and repositionable 5Fr delivery Closed cell, woven st

Microvention/Terumo



CARDIOVASCULAR RESEARCH FOUNDATIO: At the heart of innovation

Mesh-Covered Stents CGuard Prime EPS Polyethylene Terephthalate (PET) 20µ wide fiber

nitional stant

InspireMD

ARDIOVASCULAR ESEARCH FOUNDATION t the heart of innovation

Mesh-Covered Stents CGuard Prime EPS

CAUTION: Investigational Device. Limited by United States Law to Investigational Use only. Not available in US. Not approved by FDA.

Mesh-Covered Carotid Stents Conclusion

- Goal: decrease neurologic events, especially delayed embolization through the cells of the stent.
- Future: clinically useful stent design will likely include mesh coverage.
- Balance between material type, positioning, and cell size.

